PHYSICS OF FLUIDS VOLUME 13, NUMBER 1 JANUARY 2001

Many-body effects and matrix inversion in low-Reynolds-number
hydrodynamics

Kengo Ichiki®
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

John F. Brady
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena,
California 91125

(Received 5 August 1999; accepted 3 October 2000

It is shown that the method of reflections in resistance fowith truncated multipolésis one of

many possible iterative methods to obtain the inverse of the mobility mawith the same
truncation in low-Reynolds-number hydrodynamics. Although the method of reflections in the
mobility form is guaranteed to converge, it is found that in the resistance form the method may fail
to converge. This breakdown is overcome by conjugate-gradient-type iterative methods, and the
implications of the iterative method for low-Reynolds-number hydrodynamics are discussed.
© 2001 American Institute of Physic§DOI: 10.1063/1.1331320

In low-Reynolds-number hydrodynamics, the interactiondiscussion of the implications of these findings for particle
among particles is completely characterized by either the resimulation methods.
sistance or the mobility matrix? The former gives the At low Reynolds numbers with a rigid spherical particle
forces in terms of the velocities, and the latter gives thex placed atx,, the velocity field aix can be written as
velocities in terms of the forces; they are inverses of each
other. In the Stokesian dynamics method to simulate particle u(x)= ———
motion at low Reynolds numbers, an approximate pair-wise 8mu
mobility matrix is constructed and inverted as a way to take ) ] ]
into account long-range, many-body hydrodynamic interacWhereFa is the force exerted by particlke on the fluid,J(r)
tions® Durlofsky et al® showed for a pair of particles that 'S the Oseen tensor,
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J(X—=X,)-Fo+---, (1)

this inversion of the pair-wise mobility matrix is equivalent
to a summation of an infinite series of reflected resistance J(r)= E I+ m
interactions. The method of reflections is an iterative method r r2)’

to solve for the hydrodynamic interactions among partfcles
and thus is a way to take into account many-body interacand! is the unit tensor. The viscosity of the fluid js For
tions. While the convergence of the method of reflections hagimplicity, we only discuss in detail the truncation @ at
been proven for the mobility problefithe convergence for the level of the zeroth moment—the force, which gives the
the resistance problem is an open question. We shall see thg@-called F-version in Stokesian dynamics; that is, we ne-
for more than two particles the method of reflections in thedlect the torque and higher order force moments. The exten-
resistance form may fail to converge, which has importanfion {0 include higher m'qmer:ft§|s straightforward.
implications for Stokesian dynamics-like algorithms that ~_1N€ @bove is a mobility representation giving the veloc-
wish to bypass the computationally costly mobility matrix ity in tgrms of the force_._To construct a resistance form—
inversion and still incorporate many-body effects. However,force_S in terms of velocities—we make use of Fasdaw’
the method of reflections is only one of many iterative meth-1© Write
ods that can be used to invert the mobility matrix, and other
iterative techniques can be used to insure convergence. F,=6mua
We briefly summarize the method of reflections with
truncated multipoles in resistance form and then clarify th%vhereU is the translational velocity of particle with cen-
relation beFv_veen th_e method of refle_ctions and the inversioLEler atxacf andu’(x) is the velocity field in which particler
of the mobility matnx.. Next we examine the convergence O,fis immersed—due to an imposed flow or caused by other
the method of reflections for many-body problems in detail

h hat th h fail is al particles. Faxe's law (2) is exact provided that’ is the
and show that the method may fail to converge. It is alsQyy 40t golution to the Stokes flow problem subject to the

shown that conjugate-gradient-type iterative methods caponer houndary conditions on the surfaces of all the par-
overcome the convergence limitations. We conclude with @ijes. |n general, we do not know the exact form wf

which would be a complete solution to the many-body prob-
dElectronic mail: ichiki@kona.jinkan.kyoto-u.ac.jp lem, but rather build it up in an iterative manner: first ap-

2

a
u,— 1+€V2>u’(xa) , 2

1070-6631/2001/13(1)/350/4/$18.00 350 © 2001 American Institute of Physics

Downloaded 15 Dec 2000 to 130.54.246.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



Phys. Fluids, Vol. 13, No. 1, January 2001 Many-body effects in low-Reynolds-number hydrodynamics 351

proximating the velocity field as that due to noninteractingexpansion; however, the for€" in (4) has reflections up to
particles, e.g.(1), and then correcting the force density of ith order among all particles in the system—it includes
particle a by (2), and so on. many-body interactions. In the usual application of the
Consider two particles: neglecting all interactions be-method of reflections one not only takes into account contri-
tween these particles we have for the force on particle putions of the reflections but also revises the base
translating with velocityd,, solution—in our case, this corresponds to taking into account
higher moments in the multipole expansion(8). In (4) we
have considered only force multipoles—the so-called
where the superscript (0) denotes the zeroth-order reflectiofs-version of the Stokesian dynamics metfi§dhe velocity
The force on a particle now causes a velocity disturbancedisturbance caused by the force on a particle will also induce

FO=6muau,,

which can be expressed by the multipole expangioras higher force moments—torques, stresslets, etc.—in a second
a2 particle. These can be incorporated into the method of reflec-
uO(x)= ——| 1+ EVZ) J(x—x,)-FO). (3)  tions by using the appropriate Faxaw and velocity distur-

bance for the higher force moments. The FTS version of
Substituting this disturbance flow into Faxe law (2), we  Stokesian dynamics incorporates the force, torque, and
obtain the force on particlgg due to particlea with the  stresslet in this fashion.

first-order reflection correction: Consider the inversion of the matri in a linear equa-
1 2 2 tion
a2 (0)
F)=6mua Ug— g | 1+ 5 V] Axg—x,) - FD|. A-x=b
This procedure can be repeated, with ttreorder reflection  in an iterative manner. First, we split the matrix as
written in a recurrent equation as A=A+ A,, )
2 2
F(')—GTr,u,a Ug— e ! 1+ %Vz) I(Xg—X,)- Fi-D| and form an iterative procedure
x=(Ay) (b= Ay-x),
It is easy to extend this procedure to tRebody problem by o .
superposing disturbances by the other particles. giving successively

We can summarize the method of reflections of the xO=(A)"L.b
F-version in a matrix form as ! '

i xW=(Ap) "t [b—Ay-x], (6)
FO=TZ[U-M-FOV]=T{ 1+ 2, [—M-I]k) U, 4 X =(A) "L [b—Ay-x(~D]
~ i
whereZ and M are defined b _ _
d =(A) |1+ 3 [—Ay (A) HF
0 M - M -
MR 0 - MY The condition for the convergence (8) is that the maxi-
T=6mpal, M= . . ) . mum absolute value of the eigenvalues of the iteration matrix
: ; - | “A,-(A;) Y"—called spectral radius—be less than unity.
MRP MRS ... 0 As will be shown in the next section, this criteria is more
severe than that of the existence of the inverse—that the
and MRB is the Rotne—Prager tensor determinant of matriXA be non zero. The splitting ifb) is
5\ 2 essential to the convergence and its failure means the split-
RP_ +a_V2) I(Xe—Xg). ting [and equivalently the initial gues€®=(A;) " *-b] is
“F 8mua “ poor.
In (4) and the following, vectors without particle index are ~ Comparing(6) and (4), it is seen that the method of
defined as reflections is equivalent to the inversion of the mobility prob-
() lem
& i U=M*-F 7)
F(|)= : , U: , - T
=0 U where the mobility matrix is given by
N N
and the power of tensor i) means that for a tensdx MZ=T" 1+ M. ®
(Ak)ij =Ai AL AL Therefore the method of reflectio is an iterative method
1

to invert M * with the splitting(8). This splitting means that
where we have adopted the Einstein summation conventiothe method of reflections is based on the single-body solution
with the repeated indices summed. “7-U” and corrects it in each iteration. The iterative
It should be noted that the tensdrt is formed by su- method is mathematically equivalent to the Jacobi metfod
perposition of only two-body effects through the multipole where diagonal elements are split, and has the advantage that
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FIG. 1. Force F3), for a three-body problem with a triangular configuration FIG. 3. Spectral radius of the iteration matrixA;- (A;) "% for the tri-
(10) with separatiorr and velocities(11). The correct value calculated by angle configuratioril0) with separationm. The spectral radius exceeds unity
the inverse of the mobility matrix denoted by “inverse” and the forces with for r<2.16.

even orders of reflectioris=0, 2, 4, and 6 are presented. Odd orders are all

lower than the correct value.

reflections,F") in (4), with the expected value obtained by
the inversion ofZ is trivial. If we split with another matrix  the inverse of the mobility matridxg™ in (9). For a two-body
A; closer toM *, then the convergence may be improved,problem, the method of reflections was found to converge for

but at the cost of the evaluation of\{) 1. all particle separations. With three or more particles this was
According to the previous analysis, the force calculatedhot the case.
by the method of reflections i@) with an infinite number of Consider a three-body problem where the configuration
reflectionsF—*) is equal to the force obtained by the in- and velocities are given by
verse defined by 0 0 \/gr
F :(M ) 1, U. (9) X, = r/2 L Xo=| — r/2 , Xg= 0 , (10)
Therefore, the inversion of the mobility matrixt* takes 0 0 0
into account all reflections among all particles in the system.
It should be noted that the truncated mobility mathix™ is 1
positive-definite, so that its inverse exists, and the truncation U,=U,=Uz=| 0], (11
of the multipoles in the method of reflectiof® and that in 0

the mobility matrix M~ are the same. With the grand mo-
bility matrix used in Stokesian dynamics that includes forces

torques, and stresslets, the inversion takes into account all.
igure 1 shows several values of tlkecomponent of the

reflections from these force moments among all particles. . .
. o .force on the third particleK3), calculated by(9) and (4)
The convergence of the method of reflections is investi ith i =0, 2, 4, and 6. In this case, the method of reflections

gated by comparing the force calculated by the method 0\évonverges only for large separatiarns 2.16. Figure 2 shows

the error in the forc&") defined by

corresponding to particles arranged at the corners of an equi-
lateral triangle. The particle radii have been set to unity.

=20 e er=|FO—F|/|F~|.
o~ =215 &
& r=2.16 g We see thakg increases with the number of iterations for

o =23 r<2.16. Figure 3 shows the variation of the spectral radius
of the iteration matrix ‘A,- (A;) "Y'’ with separationr. The
critical distance . where the spectral radius is equal to unity
is r.=2.1567 and agrees with the point where the method of
reflections fails to converge.
X There are several comments on this breakdown. This
three-body configuration was also calculated previously by a
variant of the method of reflectioh®and the divergence was

K reported as “numerical instability.” We believe that the di-

0 20 40 60 80 100 vergence is due to the breakdown presented here. If we con-

number of iteration i sider motion perpendicular to the plane of the particles rather

FIG. 2. Erroreg of forcesF(") with number of iterations by the method of than parallel to it, th_en the me'[_hOd of reflectlon§ might con-
reflections for a three-body problem with a triangular configuratiosy ~ Verge for all separations. This is because the eigenvalue that
with separations =2.0, 2.15, 2.16, and 2.5 and velocitigl). exceeds unity is related to parallel motion. Note that the

error er

0.1
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TABLE |I. Critical distancer . with number of particleN. Because <2, to converge, especially for close configurations and for sys-

the method of reflections with=2 always converge. tems with many particles. Physically, this breakdown arises
N because the method is based on the assumption that the
2 3 4 5 6 single-body solution is a good initial guess. For a group of

near-touching particles moving in the same direction, the to-
tal force on the cluster will scale with the radius of the sphere
that encloses the clusteR, and thus the force on each indi-
vidual particle scales witR/N, rather than with the particle
maximum eigenvalue is set by the geometry of the particlesize a. As N grows the single particle solution becomes a
configuration, but certain specific motions may not couple tgpoorer and poorer initial guess to the correct force behavior.
this eigenvalue. The breakdown is not specific to the confortunately, however, alternate, conjugate-gradient-type it-
figuration (10), however. In fact, Table | shows the critical erative methods work well in cases where the method of
distancer . for configurations where particles are placed atreflections fails.
the corners of regular polygons with the number of particles  The application of iterative methods to determine par-
N=2, 3 (equilateral triangle 4 (square, 5 (pentagoy and ticle interactions in Stokes flow could provide a substantial
6 (hexagom; r. increases with\. improvement for numerical calculations with large numbers
The convergence failure is not due to the low order ofof particles. In conventional Stokesian dynamics the resis-
the multipole truncation. We also calculatedwith higher  tance matrix for a many-body system is approximated by
truncations in terms of a general mobility problem relating R=(M*) 14 R b
irreducible velocity moments and irreducible force '
moments. The order of truncatiom is the maximum order where R'""" is the near-field lubrication interactions con-
of moments that are taken into account; F and FTS versionstructed from the exact solution of two near-touching par-
correspond tg=0 and 1, respectively. Table Il shows that ticles. Because of the matrix inversion 6ff “, the compu-
r. increases withp, and therefore higher moments do not tational load of this method is very large and limits the size
help the convergence. Although the critical separation beef the systems that can be studied. If we do not need to
comes larger ap increases, the rate of convergencé®fis  obtain the resistance matrix explicitly, but rather only the
almost the saméslightly worse with increasingp. Evi-  forces exerted on the particles, as is often the case, then the
dently, the largest eigenvalue for the parallel motion is indeprocedure to evaluate the forces would be improved compu-
pendent ofp. The reason for the breakdown is that the tationally by applying an iterative methdds shown earlier
single-body solution is no longer a good approximation toin this paper, the method of reflections is not a good choice
M7, especially for smalt and largeN. because of its slow, and loss of, convergence, but iterative
The breakdown of the method of reflections can be overmethods like GMRES for F version and BiCGSTARor
come if we use conjugate-gradient-type iterative methodshigher truncated versions with nonsymmetric matrices are
which are widely used for sparse matrix problehttere, we  superior and converge.
use the generalized minimum residual met{GMRES®
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