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Many-body effects and matrix inversion in low-Reynolds-number
hydrodynamics

Kengo Ichikia)

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

John F. Brady
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena,
California 91125

~Received 5 August 1999; accepted 3 October 2000!

It is shown that the method of reflections in resistance form~with truncated multipoles! is one of
many possible iterative methods to obtain the inverse of the mobility matrix~with the same
truncation! in low-Reynolds-number hydrodynamics. Although the method of reflections in the
mobility form is guaranteed to converge, it is found that in the resistance form the method may fail
to converge. This breakdown is overcome by conjugate-gradient-type iterative methods, and the
implications of the iterative method for low-Reynolds-number hydrodynamics are discussed.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1331320#
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In low-Reynolds-number hydrodynamics, the interacti
among particles is completely characterized by either the
sistance or the mobility matrix.1,2 The former gives the
forces in terms of the velocities, and the latter gives
velocities in terms of the forces; they are inverses of e
other. In the Stokesian dynamics method to simulate part
motion at low Reynolds numbers, an approximate pair-w
mobility matrix is constructed and inverted as a way to ta
into account long-range, many-body hydrodynamic inter
tions.3 Durlofsky et al.3 showed for a pair of particles tha
this inversion of the pair-wise mobility matrix is equivale
to a summation of an infinite series of reflected resista
interactions. The method of reflections is an iterative meth
to solve for the hydrodynamic interactions among particl2

and thus is a way to take into account many-body inter
tions. While the convergence of the method of reflections
been proven for the mobility problem,4 the convergence fo
the resistance problem is an open question. We shall see
for more than two particles the method of reflections in
resistance form may fail to converge, which has import
implications for Stokesian dynamics-like algorithms th
wish to bypass the computationally costly mobility matr
inversion and still incorporate many-body effects. Howev
the method of reflections is only one of many iterative me
ods that can be used to invert the mobility matrix, and ot
iterative techniques can be used to insure convergence.

We briefly summarize the method of reflections w
truncated multipoles in resistance form and then clarify
relation between the method of reflections and the invers
of the mobility matrix. Next we examine the convergence
the method of reflections for many-body problems in de
and show that the method may fail to converge. It is a
shown that conjugate-gradient-type iterative methods
overcome the convergence limitations. We conclude wit

a!Electronic mail: ichiki@kona.jinkan.kyoto-u.ac.jp
3501070-6631/2001/13(1)/350/4/$18.00

Downloaded 15 Dec 2000  to 130.54.246.22.  Redistribution subject t
e-

e
h
le
e
e
-

e
d

-
s

hat
e
t

t

,
-
r

e
n
f
il
o
n
a

discussion of the implications of these findings for partic
simulation methods.

At low Reynolds numbers with a rigid spherical partic
a placed atxa , the velocity field atx can be written as

u~x!5
1

8pm S 11
a2

6
¹2D J~x2xa!•Fa1•••, ~1!

whereFa is the force exerted by particlea on the fluid,J(r )
is the Oseen tensor,

J~r !5
1

r S I1
rr

r 2D ,

and I is the unit tensor. The viscosity of the fluid ism. For
simplicity, we only discuss in detail the truncation of~1! at
the level of the zeroth moment—the force, which gives t
so-called F-version in Stokesian dynamics; that is, we
glect the torque and higher order force moments. The ex
sion to include higher moments3,5 is straightforward.

The above is a mobility representation giving the velo
ity in terms of the force. To construct a resistance form
forces in terms of velocities—we make use of Faxe´n’s law2

to write

Fa56pmaFUa2S 11
a2

6
¹2Du8~xa!G , ~2!

whereUa is the translational velocity of particlea with cen-
ter atxa , andu8(x) is the velocity field in which particlea
is immersed—due to an imposed flow or caused by ot
particles. Faxe´n’s law ~2! is exact provided thatu8 is the
exact solution to the Stokes flow problem subject to
proper boundary conditions on the surfaces of all the p
ticles. In general, we do not know the exact form ofu8,
which would be a complete solution to the many-body pro
lem, but rather build it up in an iterative manner: first a
© 2001 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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proximating the velocity field as that due to noninteracti
particles, e.g.,~1!, and then correcting the force density
particlea by ~2!, and so on.

Consider two particles: neglecting all interactions b
tween these particles we have for the force on particlea
translating with velocityUa

Fa
(0)56pmaUa ,

where the superscript (0) denotes the zeroth-order reflec
The force on a particle now causes a velocity disturban
which can be expressed by the multipole expansion~1! as

u(0)~x!5
1

8pm S 11
a2

6
¹2D J~x2xa!•Fa

(0) . ~3!

Substituting this disturbance flow into Faxe´n’s law ~2!, we
obtain the force on particleb due to particlea with the
first-order reflection correction:

Fb
(1)56pmaFUb2

1

8pm S 11
a2

6
¹2D 2

J~xb2xa!•Fa
(0)G .

This procedure can be repeated, with theith order reflection
written in a recurrent equation as

Fb
( i )56pmaFUb2

1

8pm S 11
a2

6
¹2D 2

J~xb2xa!•Fa
( i 21)G .

It is easy to extend this procedure to theN-body problem by
superposing disturbances by the other particles.

We can summarize the method of reflections of
F-version in a matrix form as

F( i )5I•@U2M̃•F( i 21)#5I•S I1 (
k51

i

@2M̃•I#kD •U, ~4!

whereI andM̃ are defined by

I56pmaI, M̃5F 0 M12
RP

••• M1N
RP

M21
RP 0 ••• M2N

RP

A A � A

MN1
RP MN2

RP
••• 0

G ,

andMab
RP is the Rotne–Prager tensor

Mab
RP5

1

8pma S 11
a2

6
¹2D 2

J~xa2xb!.

In ~4! and the following, vectors without particle index a
defined as

F( i )5F F1
( i )

A

FN
( i )
G , U5F U1

A

UN

G ,

and the power of tensor in~4! means that for a tensorA

~Ak! i j 5Ail 1
Al 1l 2

•••Al k21 j ,

where we have adopted the Einstein summation conven
with the repeated indices summed.

It should be noted that the tensorM̃ is formed by su-
perposition of only two-body effects through the multipo
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expansion; however, the forceF( i ) in ~4! has reflections up to
ith order among all particles in the system—it includ
many-body interactions. In the usual application of t
method of reflections one not only takes into account con
butions of the reflections but also revises the ba
solution—in our case, this corresponds to taking into acco
higher moments in the multipole expansion in~3!. In ~4! we
have considered only force multipoles—the so-cal
F-version of the Stokesian dynamics method.3,6 The velocity
disturbance caused by the force on a particle will also ind
higher force moments—torques, stresslets, etc.—in a sec
particle. These can be incorporated into the method of refl
tions by using the appropriate Faxe´n law and velocity distur-
bance for the higher force moments. The FTS version
Stokesian dynamics incorporates the force, torque,
stresslet in this fashion.

Consider the inversion of the matrixA in a linear equa-
tion

A•x5b

in an iterative manner. First, we split the matrix as

A5A11A2 , ~5!

and form an iterative procedure

x5~A1!21
•~b2A2•x!,

giving successively

x(0)5~A1!21
•b,

x(1)5~A1!21
•@b2A2•x(0)#, ~6!

x( i )5~A1!21
•@b2A2•x( i 21)#

5~A1!21
•S I1 (

k51

i

@2A2•~A1!21#kD •b .

The condition for the convergence of~6! is that the maxi-
mum absolute value of the eigenvalues of the iteration ma
‘‘ A2•(A1)21’ ’—called spectral radius—be less than unit
As will be shown in the next section, this criteria is mo
severe than that of the existence of the inverse—that
determinant of matrixA be non zero. The splitting in~5! is
essential to the convergence and its failure means the s
ting @and equivalently the initial guessx(0)5(A1)21

•b] is
poor.

Comparing~6! and ~4!, it is seen that the method o
reflections is equivalent to the inversion of the mobility pro
lem

U5M `
•F, ~7!

where the mobility matrix is given by

M `5I 211M̃. ~8!

Therefore the method of reflections~4! is an iterative method
to invertM ` with the splitting~8!. This splitting means tha
the method of reflections is based on the single-body solu
‘‘ I•U’ ’ and corrects it in each iteration. The iterativ
method is mathematically equivalent to the Jacobi metho7,8

where diagonal elements are split, and has the advantage
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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the inversion ofI is trivial. If we split with another matrix
A1 closer toM `, then the convergence may be improve
but at the cost of the evaluation of (A1)21.

According to the previous analysis, the force calcula
by the method of reflections in~4! with an infinite number of
reflectionsF( i→`) is equal to the force obtained by the in
verse defined by

F`5~M `!21
•U. ~9!

Therefore, the inversion of the mobility matrixM ` takes
into account all reflections among all particles in the syste
It should be noted that the truncated mobility matrixM ` is
positive-definite, so that its inverse exists, and the trunca
of the multipoles in the method of reflections~4! and that in
the mobility matrixM ` are the same. With the grand mo
bility matrix used in Stokesian dynamics that includes forc
torques, and stresslets, the inversion takes into accoun
reflections from these force moments among all particles

The convergence of the method of reflections is inve
gated by comparing the force calculated by the method

FIG. 1. Force (F3)x for a three-body problem with a triangular configuratio
~10! with separationr and velocities~11!. The correct value calculated b
the inverse of the mobility matrix denoted by ‘‘inverse’’ and the forces w
even orders of reflectionsi 50, 2, 4, and 6 are presented. Odd orders are
lower than the correct value.

FIG. 2. ErroreF of forcesF ( i ) with number of iterationsi by the method of
reflections for a three-body problem with a triangular configuration~10!
with separationsr 52.0, 2.15, 2.16, and 2.5 and velocities~11!.
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reflections,F( i ) in ~4!, with the expected value obtained b
the inverse of the mobility matrix,F` in ~9!. For a two-body
problem, the method of reflections was found to converge
all particle separations. With three or more particles this w
not the case.

Consider a three-body problem where the configurat
and velocities are given by

x15F 0

r /2

0
G , x25F 0

2 r /2

0
G , x35FA 3

2r

0

0
G , ~10!

U15U25U35F 1

0

0
G , ~11!

corresponding to particles arranged at the corners of an e
lateral triangle. The particle radii have been set to un
Figure 1 shows several values of thex-component of the
force on the third particle (F3)x calculated by~9! and ~4!
with i 50, 2, 4, and 6. In this case, the method of reflectio
converges only for large separationsr>2.16. Figure 2 shows
the error in the forceF( i ) defined by

eF5uF( i )2F`u/uF`u .

We see thateF increases with the number of iterations f
r ,2.16. Figure 3 shows the variation of the spectral rad
of the iteration matrix ‘‘A2•(A1)21’ ’ with separationr. The
critical distancer c where the spectral radius is equal to un
is r c52.1567 and agrees with the point where the method
reflections fails to converge.

There are several comments on this breakdown. T
three-body configuration was also calculated previously b
variant of the method of reflections2,9 and the divergence wa
reported as ‘‘numerical instability.’’ We believe that the d
vergence is due to the breakdown presented here. If we
sider motion perpendicular to the plane of the particles rat
than parallel to it, then the method of reflections might co
verge for all separations. This is because the eigenvalue
exceeds unity is related to parallel motion. Note that

ll

FIG. 3. Spectral radius of the iteration matrix ‘‘A2•(A1)21’ ’ for the tri-
angle configuration~10! with separationr. The spectral radius exceeds uni
for r ,2.16.
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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maximum eigenvalue is set by the geometry of the part
configuration, but certain specific motions may not couple
this eigenvalue. The breakdown is not specific to the c
figuration ~10!, however. In fact, Table I shows the critica
distancer c for configurations where particles are placed
the corners of regular polygons with the number of partic
N52, 3 ~equilateral triangle!, 4 ~square!, 5 ~pentagon!, and
6 ~hexagon!; r c increases withN.

The convergence failure is not due to the low order
the multipole truncation. We also calculatedr c with higher
truncations in terms of a general mobility problem relati
irreducible velocity moments and irreducible forc
moments.5 The order of truncationp is the maximum order
of moments that are taken into account; F and FTS vers
correspond top50 and 1, respectively. Table II shows th
r c increases withp, and therefore higher moments do n
help the convergence. Although the critical separation
comes larger asp increases, the rate of convergence ofF( i ) is
almost the same~slightly worse! with increasingp. Evi-
dently, the largest eigenvalue for the parallel motion is in
pendent ofp. The reason for the breakdown is that t
single-body solution is no longer a good approximation
M `, especially for smallr and largeN.

The breakdown of the method of reflections can be ov
come if we use conjugate-gradient-type iterative metho
which are widely used for sparse matrix problems.8 Here, we
use the generalized minimum residual method~GMRES!10

for the F version sinceM ` is symmetric. Very accurate
values with errors ofO(10216) can be obtained for all case
considered above with only two iterations. It is worth noti
that even in the case of large separations the convergen
the method of reflections can be poor; for example, the e
for a separationr 52.5 with ~10! and~11! is O(1026) at the
100th iteration.

We have shown that the method of reflections in res
tance form with truncated multipoles is equivalent to t
inversion of the mobility matrix with the same truncation.
turn, this means that the inversion of the mobility mat
takes into account the many-body effects associated with
infinite series of reflected interactions among all particl
Although the method of reflections in mobility form has be
proven to converge,4 in resistance form the method may fa

TABLE I. Critical distancer c with number of particlesN. Becauser c,2,
the method of reflections withN52 always converge.

N
2 3 4 5 6

r c 1.1369 2.1567 2.9924 3.5978 4.0744

TABLE II. Critical distancer c with order of truncationp. The truncation
with p50 andp51 corresponds to F and FTS versions, respectively.

p
0~F! 1~FTS! 2 3 4 5

r c 2.1567 2.5585 2.6344 2.6821 2.7140 2.755
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to converge, especially for close configurations and for s
tems with many particles. Physically, this breakdown ari
because the method is based on the assumption tha
single-body solution is a good initial guess. For a group
near-touching particles moving in the same direction, the
tal force on the cluster will scale with the radius of the sph
that encloses the cluster,R, and thus the force on each ind
vidual particle scales withR/N, rather than with the particle
size a. As N grows the single particle solution becomes
poorer and poorer initial guess to the correct force behav
Fortunately, however, alternate, conjugate-gradient-type
erative methods work well in cases where the method
reflections fails.

The application of iterative methods to determine p
ticle interactions in Stokes flow could provide a substan
improvement for numerical calculations with large numbe
of particles. In conventional Stokesian dynamics the re
tance matrix for a many-body system is approximated by

R5~M `!211R lub,

where R lub is the near-field lubrication interactions con
structed from the exact solution of two near-touching p
ticles. Because of the matrix inversion ofM `, the compu-
tational load of this method is very large and limits the s
of the systems that can be studied. If we do not need
obtain the resistance matrix explicitly, but rather only t
forces exerted on the particles, as is often the case, then
procedure to evaluate the forces would be improved com
tationally by applying an iterative method.5 As shown earlier
in this paper, the method of reflections is not a good cho
because of its slow, and loss of, convergence, but itera
methods like GMRES for F version and BiCGSTAB11 for
higher truncated versions with nonsymmetric matrices
superior and converge.
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