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The first part of the paper shows how ensemble averages that correspond to aprescribedstatistically
nonuniform spatial distribution of particles can be evaluated starting from a statistically uniform
ensemble. The method consists of attributing to each realization of the uniform ensemble a suitable
weight which is explicitly constructed. As an application of this general procedure, in the second
part of the paper, the behavior of particles subjected to force or torque in a statistically nonuniform
suspension and the behavior of a suspension subjected to a uniform shear are studied. In particular,
it is shown how the average translational and angular velocities of the particles with respect to the
mixture satisfy Faxe´n-like relations. Furthermore, it is pointed out that several quantities which
vanish in an identical way in the case of a uniform suspension are nonzero in the presence of spatial
nonuniformities. ©2004 American Institute of Physics.@DOI: 10.1063/1.1734951#

I. INTRODUCTION

The construction of a general theory of suspensions and
other disperse two-phase flows is an important problem in
statistical physics and fluid mechanics that has significant
implications for both science and technology.

In view of the limited success of phenomenological ap-
proaches, considerable effort has been devoted to the devel-
opment of such a theory starting from the fundamental mi-
croscopic description of fluid–particle and particle–particle
interactions. The early analytical studies by Batchelor,1,2

Brenner,3–5 Mazur,6,7 and their co-workers and many others
were mostly limited to dilute situations. The advent of pow-
erful numerical simulation techniques, such as those de-
scribed in Refs. 8–13, opened the way to the study of dense
suspensions and the literature contains many papers devoted,
on the one hand, to the characterization of dense suspensions
in terms of their effective properties such as viscosity14,15

and hindrance function16 and, on the other, to the direct
simulation of specific flows, such as channel flow.17–19 In
spite of the obvious usefulness of such direct simulations,
computational limitations prevent their application to practi-
cal flows for which the only possible description is, and will
remain for a long time to come, in terms of averaged equa-
tions. For this reason, the study of average effective proper-
ties such as the effective viscosity and mean hydrodynamic
interphase force remains of primary importance.

With very few exceptions that are restricted to the dilute
situation,20,21all the studies devoted to the derivation of such
macroscopic properties have dealt with statistically spatially
uniform systems. It is clear that the view of suspension be-
havior gained in this way is a partial one. For example, in the

simple shear flow of a uniform suspension, the velocity of
force-free particles is the same as the local volumetric veloc-
ity of the mixture and, therefore, the only remaining effective
property is the effective viscosity multiplying the rate-of-
strain tensor of this mean flow. While, in principle, one could
construct a rate-of-strain tensor of the relative motion and a
corresponding viscosity,22 no information on this new quan-
tity can be gained from simulation of a uniform system. The
same applies to many other effective properties of a suspen-
sion. To be sure, formally, these nonuniformity effects scale
as the ratio of the particle radiusa to the macroscopic length
L, or of the mean interparticle distanceaf21/3, wheref is
the particle volume fraction, toL, but this consideration is
not sufficient to dismiss them. For example, while in Stokes
flow the velocity disturbance generated by a particle extends
over a distance proportional toa, the proportionality constant
is large so that the correspondinga/L correction is not al-
ways negligible. Furthermore, important specific effects of
spatial nonuniformity have been identified, such as shear-
induced diffusion,23,24 stratification,25,26 and others. Funda-
mentally, this issue is related to the finite size of the particles
which is a central aspect of the behavior of dense suspen-
sions.

These considerations have motivated our recent work on
statistically nonhomogeneous suspensions.22,27–29This paper
is a continuation and extension of that work and consists of
two parts. In the first part, we show how ensemble averages
corresponding to anarbitrarily prescribedmacroscopic non-
uniformity can be calculated. In the second part of the paper,
we consider one such simple nonuniformity, a sine wave,
and, by ensemble averaging the results of many thousands of
direct simulations, derive for a suspension Faxe´n-like rela-
tions analogous to the well-known ones applicable to single
particles. It is also argued that, while derivation of the result
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relies on a specific spatial nonuniformity, the validity of the
conclusion is more general and extends to arbitrary situations
with weak nonuniformities. Following standard practice~see,
e.g., Refs. 10, 15, 30, 31!, simulations are conducted in a
periodic cell containing randomly arranged particles. The
present formulation also confirms the earlier derivation of
microscopic quantities, such as the mixture velocity, which
was carried out by different means.29

In Sec. II, we introduce an ensemble average method
which can treat arbitrary nonuniformities. In Sec. III, we
show a procedure to evaluate physical quantities for nonuni-
form suspensions using the nonuniform ensemble average. In
Sec. V, the numerical results for linear sinusoidal nonunifor-
mity are shown.

II. NONUNIFORM ENSEMBLE

A widely used procedure to study the bulk properties of
an extended~ideally, infinite! suspension is to fill the space
with copies of a fundamental cell in which the particles are
randomly arranged. The relevant equations are then solved
only in the fundamental cell with periodicity boundary con-
ditions.

In this section, we demonstrate how to evaluate en-
semble averages for a nonuniform suspension on the basis of
a statistically uniform ensemble of random arrangements of
particles inside the fundamental cell, thus avoiding the gen-
eration of an actual nonuniform ensemble. Using this device,
the uniform ensemble can be used to derive the statistical
properties of a suspension with built-in, prescribed, spatial
nonuniformity.

A. Universal ensemble

Using a procedure which will be explained in Sec. IV C,
we construct a statistical ensemble by randomly arranging
Np nonoverlapping equal spherical particles with radiusa in
a cubic cell of sideL.

In principle, this ensemble contains all possible configu-
rations, regular and uniform as well as nonuniform or even
heavily biased in the spatial arrangement of the particles. It is
evident that, if equal weight is assigned to each configura-
tion, the resulting ensemble averages will correspond to a
statistically homogeneous system. However, by giving the
configurations unequal weights, this same ensemble can also
mimic a spatially nonuniform system. It is for this reason
that we refer to the ensemble constructed as ‘‘universal.’’

To illustrate the point by a simple cartoon-like example,
Fig. 1 shows two ensembles, A and B, each consisting of
three configurations with five particles. Ensemble A
~roughly! describes a spatially uniform system, while en-
semble B describes a system in which the accumulation of
particles in the right lower corner is more likely. Evidently,
instead of constructing ensemble B, the same statistical bias
can be obtained by assigning weights 1, 0, and 2, respec-
tively, to the configurations in ensemble A. This is obvious.
The nontrivial question, to which we now provide an answer,
is how to assign the weights in such a way that aprescribed
spatial nonuniformity can be generated.

More precisely, we consider the following problem:
Given a generic quantityA(Ci

Np) pertaining to thei-th real-

ization of an ensemble ofNc configurations$C1
Np,...,CNc

Np%,

each withNp particles, define its average by

^A&5
1

Nc
(
i 51

Nc

W~Ci
Np!A~Ci

Np!, ~1!

where theW(Ci
Np) are suitable weights. How should these

weights be chosen for the average defined to correspond to a
system with prescribed macroscopic nonuniformity in the
particle position? Clearly, when all the weights are taken as
equal to 1, we have the uniform-ensemble average, denoted
by the index 0:

^A&05
1

Nc
(
i 51

Nc

A~Ci
Np!. ~2!

B. Uniform and nonuniform averages

Each realizationCi
Np of the ensemble consists of a set of

vectors,xi
1, xi

2,..., with xi
Np denoting the position of the cen-

ter of particle 1, 2,...,Np . For the realization Ci
Np

5$xi
1,xi

2,...,xi
Np%, the ~microscopic! number density is de-

fined by

ni~x!5 (
a51

Np

d~x2xi
a!, ~3!

and can be expanded in a Fourier series:

ni~x!5(
k

ñi~k!e2 ik•x, ~4!

with the coefficients given by

ñi~k!5
1

V E dxeik•xni~x!5
1

V (
a51

Np

eik•xi
a
, ~5!

where V5L3 is the volume of the fundamental cell. The
summation in~4! is extended to allk vectors compatible
with the cell. Fork50 we evidently have

FIG. 1. Sketch of the generation of ensemble averages for spatially statisti-
cally nonuniform systems on the basis of a spatially uniform ensemble.
Ensemble A is~roughly! uniform, whereas ensemble B has a preferential
concentration of particles in the lower right corner. Averages over ensemble
B can be calculated by attributing weights of 1, 0, and 2, respectively, to the
configurations of ensemble A.
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ñi~0!5
Np

V
5n0 ~6!

for all realizations and, therefore,

^n&05n0 ~7!

is the volume-averaged particle number density. For nonzero
k, we have

^ñ~k!&05K 1

V (
a51

Np

eik•xi
aL

0

50. ~8!

Thus, we can write

^ñ~k!&05n0dk0 . ~9!

For kÞ0, the static structure factorS(k) of the uniform en-
semble is related toñ by

^ñ~2k8!ñ~k!&05dk8k

Np

V2
S~k!. ~10!

In order to generate weights for the nonuniform en-
semble, we introduce a functionw(x) that is regular in the
fundamental cell and with the same periodicity, and assign to
the i-th realizationCi

Np the weightW(Ci
Np) defined by

W~Ci
Np!5

1

Np
(
a51

Np

w~xi
a!

5
1

Np
E dxw~x!ni~x!5

1

n0
(

k
w̃~k!ñi~2k!.

~11!

The relation between the functionw(x) and the spatial struc-
ture of the ensemble is readily found by calculating the av-
erage number density with the above-defined weights. For
k50 we have

^ñ~0!&5n0

V

Np
(

k
w̃~k!^ñ~2k!&05n0w̃~0!, ~12!

where we use~1! with ~6! and ~11!, from which w̃(0)51.
For kÞ0,

^ñ~k!&5
1

Nc
(
i 51

Nc

W~Ci
Np!ñi~k!5w̃~k!

S~k!

V
, ~13!

where we use~10!. We thus conclude that, if the desired
average number density is given by

^n&~x![n~x!, ~14!

we can generate it by assigning to each configuration of the
ensemble a weight according to~11!, where the functionw is
given in terms of its Fourier coefficients by

w̃~k!5
V

S~k!
ñ~k!, ~15!

in which ñ(k) is the Fourier coefficient of the prescribed
number density~14!.

C. Field and particle quantities

Extending the previous considerations to a generic field
quantityA(x), we expand it in a Fourier series as

A~x!5(
k

Ã~k!e2 ik•x, ~16!

where

Ã~k!5
1

V E dxeik•xA~x!. ~17!

The nonuniform ensemble average ofA with weight w̃(k) is
given by

^A&~x!5^Ã~0!&01
1

n0
(
kÞ0

(
k8

w̃~k8!^ñ~2k8!Ã~k!&0e2 ik•x,

~18!

where the averages with subscript 0 are taken over the ho-
mogeneous ensemble defined in~2!. This form is found after
observing that, forkÞ0, ^ñ(2k)Ã(0)&050 and ^Ã(k)&0

50.
Rather than dealing with complex exponentials, for ac-

tual computations it is more convenient to make use of Fou-
rier expansions in a real form. For a generic field quantity
A(x) the Fourier representation analogous to~16! is

A~x!5Ã~0!1 (
k.0

$Ãc~k!cos~k•x!1Ãs~k!sin~k•x!%,

~19!

wherek.0 appended to the summation restricts it to wave
numbers all of whose components are positive, and

Ãc~k!5
2

V E dxA~x!cos~k•x!, ~20!

Ãs~k!5
2

V E dxA~x!sin~k•x!. ~21!

In addition to field variables, the averages of quantities
Aa carried by each particlea are also of interest. Examples
are the translational and angular velocity, the force multi-
poles, and others. In order to calculate these averages, we
first transformAa to a field variable by writing

A~x!5 (
a51

Np

d~x2xa!Aa. ~22!

The Fourier coefficients are then

Ãc~k!5
2

V (
a51

Np

Aa cos~k•xa!, ~23!

Ãs~k!5
2

V (
a51

Np

Aa sin~k•xa!, ~24!

and their averages are readily calculated as in~18!. After this
step, the particle average is calculated from

^A&P~x!5
^A&~x!

^n&~x!
. ~25!
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The need for normalization bŷn&(x) is readily proven by
considering the special case ofAa51. With this device, we
can treat in a unified way both field and particle quantities
through their Fourier coefficientsÃ(k).

D. Linear sinusoidal nonuniformity

In applications of the statistical method described in this
paper, we limit ourselves to a nonuniform suspension with
weak spatial nonuniformity specified by the number density
~Fig. 2!,

n~x!5n0@11e sin~k•x!#. ~26!

It will be argued, however, that the results found in this way
extend to general weak nonuniformities. In~26! we takeuku
equal in modulus to the smallest wave numberk052p/L
and oriented in one of the three spatial directions. Hence-
forth, k will denote one of these three wave-number vectors.
The parametere is the degree of nonuniformity, and we
present results valid to first order in this quantity. In prin-
ciple, since the Stokes problem that we study is linear, lin-
earization ine enables us to use Fourier superposition to
describe weak nonuniformities of any form. It should be
noted that, to first order ink included, the volume fractionf
has the same spatial dependence27

f~x!5f0@11e sin~k•x!#1O~k2!, ~27!

in which f05 4
3pa3n0 .

With this choice ofn(x), all the weight coefficients van-
ish except

w̃~0!51, w̃s~k!5en0

V

S~k!
. ~28!

Therefore, the nonuniform ensemble average of the Fourier
coefficientsÃ becomes

^Ã&5^Ã&01e^Ã&s , ~29!

where the nonuniform part̂Ã&s is given by

^Ã&s5
1

2

V

S~k!
^ñs~k!Ã&0 , ~30!

with, on the basis of~5!,

ñs~k!5
2

V (
a51

Np

sin~k•xa!. ~31!

The ensemble average of the Fourier expansion~19! there-
fore takes the form

^A&~x!5^Ã~0!&01e@^Ãc~k!&s cos~k•x!

1^Ãs~k!&s sin~k•x!#, ~32!

since all other coefficients vanish.
For particle averages,~25! gives, up toO(e),

^A&P~x!5
1

n0
$^Ã~0!&01e@^Ãc~k!&s cos~k•x!

1~^Ãs~k!&s2^Ã~0!&0!sin~k•x!#%. ~33!

Equations~32! and ~33! show another reason why the intro-
duction of parametere is useful: The terms multiplied bye
originate exclusively from the spatial nonuniformity and
therefore, by focusing on them, we are able to identify un-
ambiguously the effect of this nonuniformity even in the
presence of the inevitable statistical noise.

III. PARAMETERIZATION

In this paper, we study three kinds of mobility problems
for nonuniform suspensions, namely, the flow induced by
mobile particles subject to constant force~referred to as the
‘‘force problem’’ in the following!, constant torque~the
‘‘torque problem’’!, or shear bulk flow~the ‘‘shear prob-
lem’’ !. We carry out direct numerical simulations by solving
the Stokes equations for each configuration of the ensemble
by the method described in Sec. IV. From the results for each
realization of the ensemble, we calculate statistical averages
according to the relations developed in the previous section.

It is useful to present the results using suitable param-
eterization, which we now describe. For convenience, we
make use of a unified notation which is first introduced in the
context of the force problem, and then extended to the other
cases.

A. Force problem

For the force problem, i.e., sedimentation, we conduct
numerical simulations where the same forceF0 is applied to
each particle. The uniform version of this problem is there-
fore characterized by a single fundamental vector,

WF5
F0

6pma
, ~34!

with m the fluid viscosity, and, therefore, any vectorial de-
pendent variablep, such as the mean settling velocity, must
take the form

^p&5@p#F
0WF , ~35!

where@p#F
0 is a coefficient calculated numerically by taking

the ensemble average of the values ofp. Here and in the
following we use subscriptF for all quantities which refer to
the applied force problem.

When we turn to the nonuniform case, in addition to
WF , the wave vectork that specifies the direction of the

FIG. 2. Example of linear sinusoidal nonuniformity.
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nonuniformity is also introduced. Therefore, it must be pos-
sible to parameterize the nonuniform part of each vectorial
dependent variable as

^p&5@p#F
i WF

i
1@p#F

'WF
' , ~36!

where the superscriptsi and' are based on the direction of
unit wave vectork̂ and

WF
i
5~ k̂k̂!•WF , ~37!

WF
'5~ I2 k̂k̂!•WF . ~38!

Clearly WF5WF
i
1WF

' . The only characteristic pseudovec-
tor is

avF
'5 k̂3WF , ~39!

which is perpendicular tok; the factora is included so that
vF

' has the dimensions of angular velocity. Therefore, any
pseudovectorq must be parameterized as

q5@q#F
'vF

' . ~40!

Note thatak̂3vF
'52WF

' , and the parallel componentvF
i

is zero.

B. Torque problem

In the second problem, we apply a constant torqueT0 to
each particle and use the subscriptT to denote the pertinent
quantities. Here, for the uniform case, pseudovectors must be
parameterized as

q5@q#T
0vT , ~41!

with

vT5
T0

8pma3
. ~42!

For the nonuniform case we have a single vector,

WT
'5ak̂3vT , ~43!

and two pseudovectors,

vT
i
5~ k̂•vT!k̂, ~44!

vT
'5~ I2 k̂k̂!•vT . ~45!

Note thatk̂3WT
'52avT

' .

C. Shear problem

In the third problem, we apply linear shear flow, so that,
even in the uniform case, there is a velocity field imposed
given by

u`~x!5E`
•x, ~46!

whereE` is the rate-of-strain tensor of the flow and is sym-
metric and traceless. The corresponding results will carry an
index E. Because we cannot construct any vector or
pseudovector fromE` only, there cannot be any uniform
contribution to vectorsp or pseudovectorsq for the shear
problem. In the nonuniform case, one can construct two
characteristic vectors,

WE
i
5a~ k̂k̂!•~E`

• k̂!, ~47!

WE
'5a~ I2 k̂k̂!•~E`

• k̂!, ~48!

and one characteristic pseudovector,

vF
'5 k̂3~E`

• k̂!. ~49!

Note thatk̂3vE
'52WE

' .

D. Summary

Because of the linearity of Stokes flow, the results for
these three problems can be superposed. Therefore, vectors
^p& and pseudovectorŝq& are generally parameterized as

^p&5@p#F
0WF1@p#F

i WF
i
1@p#F

'WF
'1@p#T

'WT
'

1@p#E
i WE

i
1@p#E

'WE
' , ~50!

and

^q&5@q#T
0vT1@q#F

'vF
'1@q#T

i
vT

i
1@q#T

'vT
'1@q#E

'vE
' .
~51!

IV. NUMERICAL METHOD

We now introduce suitable expressions for the quantities
on which we focus in this paper, namely, the average mixture
velocity ~or volumetric flux!, denoted bŷ um&, the average
mixture angular velocity,̂ Vm&, the average particle veloc-
ity, ^U&, and the average particle angular velocity^V&. The
numerical procedures developed earlier and applied to the
above quantities are also outlined.

A. Many-body problem

Input to the nonuniform ensemble averaging procedure
is the solution of the Stokes many-body problem, which can
be expressed in the form of a generalized mobility equation,

F U2U`

V2V`

2E`

2U`
G5M•F F

T
S
F
G , ~52!

whereU andV are translational and rotational velocities of
the particles, andU` andV` are defined by

U`~a!5
1

4pa2 ESa
dS~y!u`, ~53!

V`~a!5
1

4pa2 ESa
dS~y!

3

2a2
~y2xa!3u`~y!. ~54!

Furthermore,E` and U` are, respectively, the strain tensor
and higher order velocity moments of the imposed flowu`,
M is the generalized mobility matrix, andF, T, S, andF are
the force, torque, stresslet, and higher order force moments
of the particles.8,32 Detailed definitions are summarized in
the Appendix. Whenu` is itself a Stokes velocity field and,
therefore, biharmonic, we have
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U`~a!5S 11
a2

6
¹2Du`~xa!, ~55!

V`~a!5 1
2“3u`~xa!. ~56!

The three problems we study are mobility problems, so
F and T are prescribed. For the imposed flow problem, the
quantitiesU`, V`, E`, and U` are also given. Therefore,
~52! can be solved, and we obtainU, V, S, andF for each
configuration.

To solve the many-body problem, we use the same nu-
merical code as in previous papers,22,27which is based on the
method developed by Mo and Sangani.31 This step is the
most time-consuming part of the present method. In the
code,F is expressed by the coefficients of spherical harmon-
ics in Lamb’s general solution.33,34 In order to save time, we
use solutions of the many-body problems obtained in Refs.
22 and 27, to which we add new calculations for many other
values of both volume fractionf and particle numberNp .
For consistency we use the same parameters, taking into ac-
count multipoles up to fifth order. In the final processing of
the data, however, only multipoles up to the fourth order are
included.

For several cases, we also used the Stokesian dynamics
method32 extended to a periodic system~see the Appendix!,
and have confirmed that the two methods give the same re-
sults within the accuracy of multipole truncation.

B. Mixture velocity

Besides particle quantities such asU andV, we are also
interested inum , the volumetric flux of the mixture. Tank-
sley and Prosperetti29 gave a detailed expression ofum in
terms of Lamb coefficients; here, we give another expression
of um .

For a single realization of the ensemble, the mixture ve-
locity um is given by the integral35,36

um~x!2u`~x!52
1

8pm (
a51

Np E
Sa

dS~y!J~x2y!•f~y!,

~57!

whereu` is the imposed flow,J is the Green’s function of
the problem, andf is the force density at positiony on the
surface of thea-th particle.

Note thatum given by ~57! is not only defined in the
fluid domain, but also inside the particles, where, in fact, it is
identical to the rigid-body value,

um~x!5Ua1Va3x, ~58!

because it is the Stokes solution that satisfies this equation on
the particle surface due to the no-slip condition. Therefore,
~57! not only gives the fluid velocity in the fluid domain, but
also the volumetric flux of the mixture in the whole domain.

In the present theory, we need the Fourier coefficients of
the mixture velocity rather thanum(x) itself. In this case, we
can avoid the complexity of the Ewald summation for peri-
odic boundary conditions and use the expression valid in an
infinite volume by modifying wave vectork from a continu-
ous to a discrete variable;J~r ! is then the Oseen tensor given
by

J~r !5
1

r S I1
rr

r 2D . ~59!

This is the same procedure as that for the analysis of a peri-
odic system used by Ladd10 and applied to an infinite system
in Ref. 7. Upon using the convolution relation in~57!, the
Fourier coefficient of the relative velocity (um2u`) is given
by

~ ũm! i~k!5
1

m

1

k2 S d i j 2
kikj

k2 D (
n50

` i nkk...
n

n!
F̃j ,k...

~n! ~k!, ~60!

whereF̃~k! is the Fourier coefficient of the force momentF.
In real form, the cosine and sine coefficients are

~ ũm
c ! i~k!5

1

m

1

k2 S d i j 2
kikj

k2 D (
n50

`

~2 !nF kk...
2n

~2n!!
F̃j ,k...

c~2n!~k!

2
kk...

2n11

~2n11!!
F̃ j ,k...

s~2n11!~k!G , ~61!

~ ũm
s ! i~k!5

1

m

1

k2 S d i j 2
kikj

k2 D (
n50

`

~2 !nF kk...
2n

~2n!!
F̃ j ,k...

s~2n!~k!

1
kk...

2n11

~2n11!!
F̃j ,k...

c~2n11!~k!G , ~62!

whereF̃c(k) andF̃ s(k) are the cosine and sine coefficients
of the force moment, respectively. Equation~60! is equiva-
lent to ~8.2! in the paper by Tanksley and Prosperetti.29

Note that the coefficient withk50 should be dropped in
order for the velocity to be nonsingular.30,37 This specifies
the frame of reference as the volume average of the mixture
velocity in the fundamental cell is then zero. This is the
physical meaning of Batchelor’s renormalization.1

C. Ensembles

Our interest lies in quantities which correspond to large
~ideally infinite! systems, for whichk→0. For each value of
f, therefore, it is necessary to construct ensembles that cor-
respond to different values ofk so as to be able to calculate
this limit. This requires considering ensembles with different
numbers of particlesNp as

ka5
2pa

L
5S 6p2f

Np
D 1/3

. ~63!

For f between 1% and 50%, we construct ensembles of be-
tween 256 and 2048 configurations with 10–160 particles.
Statistical errors in the ensemble averages~2! decrease rather
slowly as 1/ANc. Considerations of computational time force
us to strike a compromise between the number of configura-
tions and the residual statistical error, especially for large
numbers of particles. Table I shows the number of configu-
rations we use in the different ensembles.

The ensembles are constructed as follows. For volume
fractions less than 50%, we start by randomly arranging the
particles in the cell making sure that no overlap occurs, and
subject them to a random walk, displacing each one of them
taking care to avoid overlaps at each step. After 100Np steps
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per particle, we store the resultant configuration as a member
of the ensemble. The initial configuration is regenerated ev-
ery time. Forf550%, we start by arranging theNp particles
in a regular array and execute 1000Np random steps after
which we store the resulting configuration. This configura-
tion is used as the starting condition for generating the next
one. By repeating this procedure, we construct ensembles of
Nc configurations.

The static structure factor for hard spheres in infinite
space is isotropic and is approximated by the analytical so-
lution of the Percus–Yevick~PY! integral equation38–40 as

SPY~k!5@12n0c̃~2ka!#21, ~64!

wheren0 is the number density, andc̃(2ka) is the Fourier
transform of the direct~isotropic! correlation function given
by

c̃~X!52
32pa3

X3 Fa~sinX2X cosX!

1
b

X
$2X sinX2~X222!cosX22%

1
g

X3
$~4X3224X!sinX

2~X4212X2124!cosX124%G , ~65!

whereX52ka, and

a~f!5
~112f!2

~12f!4
, ~66!

b~f!526f
~11 1

2f!2

~12f!4
, ~67!

g~f!5
f

2

~112f!2

~12f!4
. ~68!

Figure 3 shows a comparison betweenSPY(k) and the struc-
ture factorS(k) for our ensembles for a volume fraction of
15%. We calculate this quantity according to

S~k!5
V2

Np
^ñ~k!ñ~2k!&0 , ~69!

considering not onlyk52p/L, but also the higher modes,
A2k, A3k, 2k, and so on. For each wave vector, the point
plotted in Fig. 3 is the average over all different directions of
the wave vector. This result shows that, although our en-

sembles are not strictly isotropic, they give rise to a structure
factor that is essentially indistinguishable from the Percus–
Yevick distribution in infinite space in the wave vectors
range greater than 2p/L. In particular, one may therefore
expect that the linear sinusoidal nonuniformity with the
smallest wave numberk is not affected by the periodicity.

For all our ensembles, Fig. 4 shows the unscaled non-
uniform averages ofñs(k) for the case of linear sinusoidal
nonuniformity. According to~30!, this quantity is defined by

Ss~k!5
V2

2Np
^@ ñs~k!#2&0 . ~70!

Every point represents an ensemble average for given values
of f andNp . A comparison of Fig. 4 with Fig. 3 in a previ-
ous paper,27 shows that, while some results for volume frac-
tionsf50.15, 0.25, and 0.35 have been reused as mentioned
before, many more ensembles have been added since then.
Note that the universal ensemble is translationally invariant,
so that the averagê(ñc)2&0 is equal to^(ñs)2&0 within sta-
tistical accuracy. Therefore,Ss(k) in ~70! is equal toS(k) in

TABLE I. Number of configurations in the ensemble used in the simula-
tions.

No. of particles,Np No. of configurations,Nc

10–16 2048
17–79 1024

80–150 512
160 256

FIG. 3. Comparison between the structure factor given by the Percus–
Yevick solutionSPY(k) in ~64! ~solid line! andS(k) numerically calculated
from ~69! from the configurations used in the present work forf50.15. The
closed circles are calculated withk52p/L, and the open circles are with
higher spatial modes.

FIG. 4. Structure factorSs(k) calculated according to~70! for the smallest
wave number for each cell of all ensembles used in this study with volume
fraction f between 0.01 and 0.50 and particle numberNp between 10 and
160. The lines are the Percus–Yevick solutionSPY(k) in ~64! for each vol-
ume fraction.
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~69!. In Fig. 4, we also plotSPY(k) for reference. This shows
that the relative error ofSs(k) from SPY(k) is independent of
f and around 6–8%.

In the calculations that follow, we use this numerically
computedSs(k) as the structure factor for the definition of
the nonuniform probability weights in~28!.

D. Averaging and parameterization

Here we show how to evaluate the nonuniform ensemble
averages with the universal ensembles for each one of the
quantities defined above.

1. Field quantities

The Fourier coefficients of the mixture velocity defined
by ~61! and ~62! are averaged according to~29! for each
ensemble. Since the coefficient withk50 has been dropped,
there is no uniform part and, since the mixture is incompress-
ible as a whole,

“•um50, ~71!

as is obvious from~60!. This implies that the parallel com-
ponent of the nonuniform part ofum should be zero. The
numerical results also indicate that the cosine coefficient of
the nonuniform parts for the force problem and the sine co-
efficients for torque and shear problems are less than 10%
relative to the nonzero coefficients at most. This is of the
order of statistical error which may be expected, and we
therefore assume they vanish. If we retain only the nonzero
terms in the notation in Sec. IV C, we then have

^ũm
s ~k!&s5@um#F

'WF
' , ~72!

^ũm
c ~k!&s5@um#T

'WT
' , ~73!

^ũm
c ~k!&s5@um#E

'WE
' , ~74!

from which

^um2u`&~x!5e sin~k•x!@um#F
'WF

'

1e cos~k•x!@um#T
'WT

'

1e cos~k•x!@um#E
'WE

' . ~75!

The three parameters denoted by square brackets in the pa-
rameterizations~72!–~74! are the building blocks for the
analysis of nonuniform suspensions given in the next section.

The angular velocity of the mixture,Vm , is

Vm5 1
2 “3um . ~76!

Substituting~75!, we have

K Vm2
1

2
“3u`L ~x!5e cos~k•x!

k

2
@um#F

'vF
'

1e sin~k•x!
k

2
@um#T

'vT
'

2e sin~k•x!
k

2
@um#E

'vE
' . ~77!

2. Particle quantities

In order to calculate the average of the particle velocity
U for each configuration, we find its Fourier coefficients
Ũ~0!, Ũc, and Ũs according to~23! and ~24!, and average
them over the configurations to find̂Ũ(0)&0 , ^Ũc&s , and
^Ũs&s . From the numerical results, the uniform parts for the
torque and shear problems, the cosine coefficient of the non-
uniform part for the force problem, and the sine coefficients
for the torque and shear problems vanish. Using parameter-
izations in the form of~50!, we then have

^U2U`&P~x!5@U#F
0WF1e sin~k•x!~@U#F

i WF
i

1@U#F
'WF

'!1e cos~k•x!@U#T
'WT

'

1e cos~k•x!~@U#E
i WE

i
1@U#E

'WE
'!.

~78!

In a similar way, for the particle angular velocityV, we have

^V2V`&P~x!5@V#T
0WT1e cos~k•x!@V#F

'vF
'

1e sin~k•x!~@V#T
i
vT

i
1@V#T

'vT
'!

1e sin~k•x!@V#E
'vE

' . ~79!

Note that^U`&P and ^V`&P are the particle averages of the
moments of the imposed velocity defined in~53! and in~54!.

3. Slip velocities

The translational slip velocitŷuD& is the average trans-
lational velocity of the particles relative to the mixture,

^uD&5^U2U`&P2^um2u`&. ~80!

Upon inserting expression~55! for U`(a) in ~22! and then in
~25! to calculatê U`&P, because of the presence of the factor
d(x2xa), we simply find

^U`&P5S 11
a2

6
¹2Du`~x!. ~81!

Furthermore, in the three cases studied in this paper,u`(x) is
either a constant or a linear function ofx so the second term
can be dropped with the result,

^uD&5^U&P2^um&. ~82!

From parameterization of the particle velocity in~78!
and of the mixture velocity in~75!, we have

^uD&~x!5@uD#F
0WF1e sin~k•x!~@uD#F

i WF
i
1@uD#F

'WF
'!

1e cos~k•x!@uD#T
'WT

'

1e cos~k•x!~@uD#E
i WE

i
1@uD#E

'WE
'!, ~83!

where

@uD#F
05@U#F

0, ~84!

@uD#F
i
5@U#F

i , ~85!

@uD#F
'5@U#F

'2@um#F
' , ~86!

@uD#T
'5@U#T

'2@um#T
' , ~87!
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@uD#E
i
5@U#E

i , ~88!

@uD#E
'5@U#E

'2@um#E
' . ~89!

The slip angular velocityVD is defined in a similar way by

^VD&5^V2V`&P2^Vm2 1
2“3u`&, ~90!

which, in the present case, using the same argument as be-
fore, becomes

^VD&5^V&P2^Vm&. ~91!

From the parameterization of the angular particle velocity in
~79! and of the angular mixture velocity in~77!,

^VD&~x!5@VD#T
0WT1e cos~k•x!@VD#F

'vF
'

1e sin~k•x!~@VD#T
i
vT

i
1@VD#T

'vT
'!

1e sin~k•x!@VD#E
'vE

' , ~92!

where

@VD#F
'5@V#F

'2
k

2
@um#F

' , ~93!

@VD#T
05@V#T

0, ~94!

@VD#T
i
5@V#T

i , ~95!

@VD#T
'5@V#T

'2
k

2
@um#T

' , ~96!

@VD#E
'5@V#E

'1
k

2
@um#E

' . ~97!

V. RESULTS

We now present and discuss the results of the multipar-
ticle simulations in light of the framework established earlier.
We focus on the slip velocitŷuD&, the mixture velocity
^um2u`&, and the slip angular velocitŷVD&. These quan-
tities are parameterized as in~83!, ~75!, and ~92!, respec-
tively, and we will examine the numerical coefficients in
these parameterizations denoted by square brackets. These
coefficients depend on both the wave vectork and the vol-
ume fractionf.

A. Velocities for the force problem

We start by considering the velocities in the force prob-
lem.

Figure 5 shows, for different volume fractions between
1% and 50%, straight-line fits to the coefficients of the pa-
rameterization of the uniform part of^U2U`&P:

@U#F
0~k,f!5A@U#F

0
1kB@U#F

0
. ~98!

The fitting is done by least squares. The error with which
~98! approximates the numerical results is smaller than the

symbols used to graphA@U#F
0

and B@U#F
0

in Fig. 6. The con-

stant termA@U#F
0

is the hindrance function for sedimentation,
U(f):

A@U#F
0
5 lim

k→0
@U#F

05U~f!. ~99!

Therefore,A@U#F
0

is the sedimentation velocity extrapolated
to infinite cell size. As Fig. 6 shows, it is well fitted by

U~f!5~12f!6.5523.4f. ~100!

Note that our numerical solution is affected by truncation of
the multipole expansion because we solve the many-body
problems including multipoles only up to fifth order.

The coefficient B(f) reflects the effect of the
periodicity10,15,31 which arises from the difference between
the sedimentation velocities of random and regular arrays.41

Several heuristic arguments have been proposed which have
led to a relation betweenB andm r , the effective viscosity of
the suspension normalized by the fluid viscosity. Mo and
Sangani31 proposed a relation which, in our notation, is

B@U#F
0
52

1.7601

~6p2!1/3

S~0!

m r
, ~101!

FIG. 5. Uniform part@U#F
0 of the particle velocity for the force problem as

a function ofk. The points are the numerically calculated ensemble averages
and the lines least-squares fits. For this problem,@U#F

0 is equal to the uni-
form part @uD#F

0 of the slip velocity.

FIG. 6. CoefficientsA andB of the linear fit~98! to @U#F
0 as functions of

volume fractionf. A coincides with the hindrance functionU(f) in ~99!
andB is the effect of the periodicity of the system. Solid and dashed lines
are fits~100! for A and the model~101! for B, respectively.
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in which S(0) is the structure factor fork50. This is also
plotted by the dashed line in Fig. 6, wherem r is evaluated
from the uniform shear problem as the average stresslets in
the standard way.10,15,31Although the model~101! captures
the qualitative behavior ofB, there is a significant difference
between (m r21)/f calculated directly and the value de-
duced from~101!. To better illustrate this difference, Fig. 7
shows (m r21)/f calculated from~101! which, in the dilute
limit, should tend toward the Einstein coefficient 5/2 which
multiplies theO(f) term ofm r . A similar difference can be
observed in Fig. 6 of our previous paper.27 These results

suggest that the relationship betweenm r and B@U#F
0

is more
complex than~101! would imply.

The coefficients for the nonuniform parts of^U2U`&P

and ^um2u`& can be fitted as

@U#F
i
5A@U#F

i

1kB@U#F
i

, ~102!

@U#F
'5

1

k2
D @U#F

'

1A@U#F
'

1kB@U#F
'

, ~103!

@um#F
'5

1

k2
D @um#F

'

1A@um#F
'

1kB@um#F
'

. ~104!

For k→0, we encounter in termsD of the perpendicular
components the same divergence found in Ref. 27. This
arises from the lowest order multipole in~60!. As noted in
Ref. 27, this divergence is physical in that it is due to the fact
that, ask→0, the width ~and therefore the weight! of the
heavier and lighter bands of the mixture increases, while the
shear force which retards their fall does not. These two di-
verging terms are found to be equal within our numerical
accuracy and therefore cancel out upon forming the perpen-
dicular component of the slip velocity, which is therefore
given by

@uD#F
'5A@uD#F

'

1kB@uD#F
'

. ~105!

The coefficientsA@uD#F
'

andB@uD#F
'

are calculated by fitting a
linear k dependence to the difference~86!.

In order to understand these results, the simplest hypoth-
esis is that the slip velocity is given by the hindrance func-

tion evaluated at the local volume fraction. For the linear
sinusoidal nonuniformity~27!, we would then have

U~f!5U~f0!1f0

dU

df
e sin~k•x!. ~106!

Figure 8 shows@uD#F
i , @uD#F

' , and f(dU/df), where the
derivative of the hindrance function is evaluated by numeri-
cal differentiation of the results for@uD#F

0. We see that the
simple hypothesis works quite well for the parallel compo-
nent, but not for the perpendicular one.

To address this difference, it is useful to remember Fax-
én’s law for a single particle,

Fa

6pma
5Ua2S 11

a2

6
¹2Du8~xa!, ~107!

whereu8 is the velocity field except for the contribution of
particlea. It is reasonable to expect a similar contribution in
the present case. Since the mixture velocityum only has a
perpendicular component, this contribution would vanish for
the parallel one, which would account for the good fit of
@uD#F

i and ~106!.
We thus introduce a coefficient,C(f;k), by

U~f!
F0

6pma
5^uD&2C~f;k!a2¹2^um&. ~108!

Physically, this equation represents an extension of Faxe´n’s
law ~107! and of the dilute-limit theory by Geigenmu¨ller and
Mazur42 to the finite volume fraction. By extrapolating to
large system size, from the previous results, we find

C~f!5 lim
k→0

1

k2a2@um#F
'

~@uD#F
i
2@uD#F

'!. ~109!

Figure 9 shows the values ofC(f) calculated from this ex-
pression together with the reference value of 1/6 suggested
by Faxén’s law ~107!. The bars indicate the error in fitting of
the least-squares procedure. Convergence is poor at low vol-
ume fractions where, due to the increased available phase-
space volume, a large number of configurations is necessary

FIG. 7. Comparison of (m r21)/f calculated directly by averaging the
stresslets for the uniform shear problem~line! and from the suggestion~101!
given in Ref. 31.

FIG. 8. Comparison off(dU/df), @uD#F
i , and @uD#F

' for a nonuniform
suspension. The three quantities should coincide if the relation between the
force on the particles and the slip velocity did not contain a Faxe´n-type
correction.
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for good statistical averaging. At high volume fractions, the
error is possibly related to truncation of the multipole expan-
sion. Nevertheless, we find general consistency between our
results and~107!. It should be stressed that, sinceC(f) is
independent ofk, by superposition and linearity, the result
~108! holds not only for the special form~26! of n(x) but, to
order (a/L)2, for any other weak nonuniformity as well.

The Faxe´n term in Eq.~108! was also studied in our
previous paper,22 where Fig. 10 is, in the present notation,
C(f)/U(f). The present results are consistent with the ear-
lier ones except for the last point in the latter corresponding
to f50.35. Due to the smaller number of simulations con-
ducted for that earlier study, it is likely that that point is
erroneous.

In conclusion, we have found that the averages of the
slip velocity are given by

@uD#F
05U~f!, ~110!

@uD#F
i
5f

dU

df
, ~111!

@uD#F
'1C~f!k2@um#F

'5f
dU

df
. ~112!

Feuillebois20 studied the sedimentation of a dilute sus-
pension that exhibited sinusoidal as well as step-like nonuni-
formities by taking only two-body interactions into account.
In the dilute limit, his results are consistent with the present
ones.27

B. Angular velocities for the torque problem

For fixedf, the uniform part of the particle angular ve-
locity has essentially nok dependence and is well fitted by a
constant,

@V#T
0~k,f!5A@V#T

0
5V~f!, ~113!

whereV~f! is the hindrance function for the torque problem.
Figure 10 showsV(f), which is fitted well by

V~f!5~12f!1.5020.41f. ~114!

The nonuniform parts ofV can be fitted by

@V#T
i
5A@V#T

i

1k2C@V#T
i

, ~115!

@V#T
'5A@V#T

'

1k2C@V#T
'

. ~116!

As expected, there is no diverging term here. The contribu-
tion of the mixture to the angular velocityVm is

@Vm#T
'5

k

2
@um#T

'5
k2

2 S D @um#T
'

k2
1A@um#T

'D . ~117!

The leading terms ofV andVm are now different and there
is no cancellation in the calculation of the slip angular ve-
locity, which is

@VD#T
'5A@VD#T

'

1k2C@VD#T
'

. ~118!

If the local slip angular velocity were only dependent on
the local value of the rotational hindrance function, one
would expect that

V~f!T058pma3^VD&, ~119!

where

V~f!5V~f0!1f0

dV

df
e sin~k•x!, ~120!

so that

@VD#T
05V~f!, ~121!

@VD#T
i
5@VD#T

'5f
dV

df
, ~122!

which is tested numerically in Fig. 11. Unlike the force case,
the numerical results evidently support the conjecture~119!,
which conforms with the conventional Faxe´n law for torque
on a single particle. The same argument presented before in
connection with~108! can also be used to conclude that
~119! holds to order (a/L)2 for any weak spatial nonunifor-
mity.

C. Further examples of the effect of nonuniformity

For uniform suspensions, the slip velocity under applied
torque, the slip angular velocity for sedimentation, and both

FIG. 9. CoefficientC(f) of the Faxe´n-type correction of the relation be-
tween force on the particles and the slip velocity defined in~109!. The line
is the dilute-limit value 1/6. The fitting error bars are also shown.

FIG. 10. Hindrance function for rotationA5V(f) as a function of the
volume fraction.
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slip and slip-angular velocities for imposed shear all vanish.
The situation is different in the presence of spatial nonuni-
formities as we now show.

The computed average velocities for the torque problem
can be fitted as

@U#T
'5kS 1

k2
D @U#T

'

1A@U#T
'D , ~123!

@um#T
'5kS 1

k2
D @um#T

'

1A@um#T
'D . ~124!

It is shown analytically in Ref. 27 that

lim
f→0

D @um#T
'

53f. ~125!

Similar to the force problem, the diverging terms ofU and
um are identical, and the leading term of the slip velocity is
O(k)

@uD#T
'5kA@uD#T

'

. ~126!

The coefficientA@uD#T
'

is shown by squares in Fig. 12. The
error bars inscribed in the symbols give an idea of the fitting

error for this quantity.A@uD#T
'

is found to be rather small, but
systematically nonzero.

For the shear problem, the parallel component ofU can
be fitted as

@U#E
i
5kA@U#E

i

, ~127!

and the perpendicular components ofU andum as

@U#E
'5kS 1

k2
D @U#E

'

1A@U#E
'D , ~128!

@um#E
'5kS 1

k2
D @um#E

'

1A@um#E
'D , ~129!

where, forD @um#E
'

Ref. 27 shows that

lim
f→0

D @um#E
'

55f. ~130!

The diverging terms again cancel upon forming the slip ve-
locity and the leading term of this quantity isO(k),

@uD#E
'5kA@uD#E

'

. ~131!

The A coefficients of the parallel and perpendicular compo-
nents are also shown in Fig. 12 by circles and triangles,
respectively. The fitting error bars are inscribed in the sym-
bols. Again, both of these quantities are clearly nonzero.

The average angular velocity coefficients in the force
problem can be fitted as

@V#F
'5kS D @V#F

'

k2
1A@V#F

'

1kB@V#F
'D , ~132!

@Vm#F
'5

k

2 S D @um#F
'

k2
1A@um#F

'

1kB@um#F
'D , ~133!

where we have diverging terms which, again, are equal, so
that the leading order of the slip angular velocity isO(k),

@VD#F
'5k~A@VD#F

'

1kB@VD#F
'

!. ~134!

The circles in Fig. 13 showA@VD#F
'

with the fitting error bars.
The corresponding results for the shear problem take the

form

@V#E
'5k2S D @V#F

'

k2
1A@V#F

'D , ~135!

@Vm#E
'52

k

2 S D @um#E
'

k2
1A@um#E

'D , ~136!

with identical diverging terms so that the leading order of the
slip angular velocity isO(k2),

@VD#E
'5k2A@VD#E

'

. ~137!

Figure 13 shows thisA coefficient with the fitting error bars.

FIG. 11. Comparison off~dV/df!, @VD#T
i , and @VD#T

' in a nonuniform
suspension. The very close similarity among the three quantities implies that
the mean torque is directly related to the slip angular velocity without a
Faxén-type correction.

FIG. 12. CoefficientA of the linear term ink in fits of the numerical results
for @uD#T

' , @uD#E
i , and @uD#E

' for the nonuniform case. Note that, while
these quantities would all vanish for a uniform suspension, they are clearly
nonzero in the presence of nonuniformity. The fitting error bars are also
shown.
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These results show that, for nonuniform suspensions, the
slip velocity ^uD& is nonzero even when no force acts on the
particles, and the slip angular velocity^VD& is nonzero even
in the absence of torque. This behavior is quite different from
that encountered in the case of uniform suspensions and it
suggests that uniform suspension simulations can only give a
partial view of the general behavior of a suspension. In par-
ticular, characterization of nonuniform suspensions requires
the introduction of additional ‘‘effective properties’’~e.g., the
Faxén coefficient! with respect to those sufficient to describe
a uniform suspension. This issue has been partially addressed
in Ref. 22 and will be pursued further in future work.

VI. CONCLUSIONS

In the first part of this paper we have shown how aver-
ages that correspond to a spatially nonuniform statistical en-
semble can be calculated on the basis of a uniform one. The
method consists in attributing to each realization of the uni-
form ensemble a suitable weight, which is constructed ex-
plicitly starting from an arbitrarily prescribed macroscopic
particle number density distribution.

We have applied this general theory to the simple case of
weak sinusoidal nonuniformity of the number density distri-
bution of equal spheres in a viscous suspension for three
mobility problems: sedimentation, the applied torque, and
imposed bulk shear flow. In spite of the special form of the
nonuniformity, we have shown that the results are valid in
general to second order in the ratio (a/L)2, wherea is the
particle radius andL the macroscopic length scale.

We have found that, in a nonuniform suspension, the
average slip angular velocity, i.e., the relative angular veloc-
ity between the particles and the mixture, can be calculated
by simply evaluating the hindrance function for rotation cor-
responding to the local concentration, as in Eq.~119!:

^V&P2
1

2
“3^um&5V~f!

T0

8pma3
, ~138!

where^V&P is the average particle angular velocity,^um& is
the mixture volumetric flux,V~f! is the hindrance function

for rotation shown in Fig. 10 and fitted as a function off by
expression~114!, andT0 is the external torque applied to the
particles.

An analogous relation for the translational slip velocity,
however, does not hold. This quantity contains a finite-size
correction proportional to¹2^um&, just as in the case of the
familiar Faxén law for a single particle,

^U&P2^um&5C~f!a2¹2^um&1U~f!
F0

6pma
, ~139!

in which ^U&P is the mean particle translational velocity,
U(f) is the ~translational! hindrance function, andF0 the
external force applied to the particles. The dependence of
coefficientC(f) on the volume fraction is shown in Fig. 9
and, within our numerical accuracy, is consistent with the
usual value of 1/6 as the particle volume fraction tends to-
ward zero.

The results~138! and ~139! represent generalizations of
the single-particle Faxe´n laws of Stokes flow to a spatially
nonuniform suspension. The spatial nonuniformity that we
have included in our study is limited to the particle number
density, i.e., the one-body distribution function.
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APPENDIX: DEFINITIONS FOR THE GENERALIZED
MOBILITY PROBLEM

The generalized mobility equation,~52!, is derived from
the integral equation~57!.

The velocity and force moments are defined by

Ui ,k...
~n! ~a!5

1

4pa2 ESa
dS~y!~y2xa!k...

n ui~y!, ~A1!

Fj ,k...
~n! ~a!52E

Sa
dS~y!~y2xa!k...

n f j~y!. ~A2!

E` andU` are defined in terms ofu`(x) by

E`~a!5
1

4pa2 ESa
dS~y!

3

2a2
@~y2xa!u`~y!

1u`~y!~y2xa!#, ~A3!

U`~n!~a!5
1

4pa2 ESa
dS~y!~y2xa!nu`~y!. ~A4!

Corresponding expressions forU` and V` were presented
earlier in ~53! and ~54!.

If, as in the cases considered in this paper, the flow im-
posed is given by

u`~x!5U01V03x1E0
•x, ~A5!

then,

U`~a!5U01V03xa1E0
•xa, ~A6!

V`~a!5V0, ~A7!

FIG. 13. CoefficientA of the linear term ink in fits of the numerical results
for @VD#F

' and@VD#E
' for the nonuniform case. While these quantities would

all vanish for a uniform suspension, they are clearly nonzero in the presence
of nonuniformity. The fitting error bars are also shown.
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E`~a!5E0, ~A8!

U`~a!50. ~A9!
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