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The first part of the paper shows how ensemble averages that correspgmesaribedstatistically
nonuniform spatial distribution of particles can be evaluated starting from a statistically uniform
ensemble. The method consists of attributing to each realization of the uniform ensemble a suitable
weight which is explicitly constructed. As an application of this general procedure, in the second
part of the paper, the behavior of particles subjected to force or torque in a statistically nonuniform
suspension and the behavior of a suspension subjected to a uniform shear are studied. In particular,
it is shown how the average translational and angular velocities of the particles with respect to the
mixture satisfy Faxe-like relations. Furthermore, it is pointed out that several quantities which
vanish in an identical way in the case of a uniform suspension are nonzero in the presence of spatial
nonuniformities. ©2004 American Institute of Physic§DOI: 10.1063/1.1734951

I. INTRODUCTION simple shear flow of a uniform suspension, the velocity of

The construction of a general theory of suspensions angnrce-free particles is the same as the local volumetric veloc-

other disperse two-phase flows is an important problem ity of the mixture and, therefore, the only remaining effective

statistical physics and fluid mechanics that has significanf™OPerty is the effective viscosity multiplying the rate-of-
implications for both science and technology. strain tensor of this mean flow. While, in principle, one could

In view of the limited success of phenomenological ap_construct a rate-of-strain tensor of the relative motion and a

proaches, considerable effort has been devoted to the devé&Qrresponding viscosit}, no information on this new quan-
opment of such a theory starting from the fundamental mility can be.gamed from S|mulat|on.of a umform system. The
croscopic description of fluid—particle and particle—particleSame applies to many other effective properties of a suspen-
interactions. The early analytical studies by Batch&for, Sion To be sure, formally, these nonuniformity effects scale
Brennerr~> Mazur®” and their co-workers and many others @S the ratio of the particle radiasto the macroscopic length
were mostly limited to dilute situations. The advent of pow-L. or of the mean interparticle distanegs™**, where¢ is

erful numerical simulation techniques, such as those dethe particle volume fraction, th, but this consideration is
scribed in Refs. 8—13, opened the way to the study of dens@ot sufficient to dismiss them. For example, while in Stokes
suspensions and the literature contains many papers devotd®w the velocity disturbance generated by a particle extends
on the one hand, to the characterization of dense suspensiof¥er a distance proportional & the proportionality constant

in terms of their effective properties such as viscdédity  is large so that the correspondimgL correction is not al-
and hindrance functidfi and, on the other, to the direct Ways negligible. Furthermore, important specific effects of
simulation of specific flows, such as channel fflda!® In spatial nonuniformity have been identified, such as shear-
spite of the obvious usefulness of such direct simulationsinduced diffusior,>?* stratification?>?® and others. Funda-
computational limitations prevent their application to practi-mentally, this issue is related to the finite size of the particles
cal flows for which the only possible description is, and will which is a central aspect of the behavior of dense suspen-
remain for a long time to come, in terms of averaged equasions.

tions. For this reason, the study of average effective proper- These considerations have motivated our recent work on
ties such as the effective viscosity and mean hydrodynamistatistically nonhomogeneous suspensior$-2°This paper

interphase force remains of primary importance. is a continuation and extension of that work and consists of
With very few exceptions that are restricted to the dilutetwo parts. In the first part, we show how ensemble averages
20,21

situation;“"all the studies devoted to the derivation of suchcorresponding to aarbitrarily prescribedmacroscopic non-
macroscopic properties have dealt with statistically spatiallyuniformity can be calculated. In the second part of the paper,
uniform systems. It is clear that the view of suspension bewe consider one such simple nonuniformity, a sine wave,
havior gained in this way is a partial one. For example, in theand, by ensemble averaging the results of many thousands of
direct simulations, derive for a suspension Fajike rela-
3Electronic mail: ichiki@mailaps.org tions analogous to the well-known ones applicable to single
YElectronic mail: prosperetti@jhu.edu particles. It is also argued that, while derivation of the result
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relies on a specific spatial nonuniformity, the validity of the o o o 4
conclusion is more general and extends to arbitrary situations %o © o)
. . L. . O
with weak nonuniformities. Following standard practisee, o © o 0%
e.g., Refs. 10, 15, 30, 31simulations are conducted in a ensemble A
periodic cell containing randomly arranged particles. The
present formulation also confirms the earlier derivation of o o R R
microscopic quantities, such as the mixture velocity, which o o
. . O
was carried out by different meafs. o © 0% 0%
In Sec. Il, we introduce an ensemble average method ensemble B
which can treat arbitrary nonuniformities. In Sec. Ill, we

show a procedure to evaluate physical quantities for nonunf!G: 1. Sketch of the generation of ensemble averages for spaally stalist-
. . ; y nonuniform systems on the basis of a spatially uniform ensemble.

form suspensions _usmg the nonunlform ?nsemble a"erage- E?]semble A is(roughly) uniform, whereas ensemble B has a preferential

Sec. V, the numerical results for linear sinusoidal nonunifor-concentration of particles in the lower right corner. Averages over ensemble

mity are shown. B can be calculated by attributing weights of 1, 0, and 2, respectively, to the
configurations of ensemble A.

II. NONUNIFORM ENSEMBLE

A widely used procedure to study the bulk properties of  MOre precisely, we consider the following problem:
an extendedideally, infinite) suspension is to fill the space Given & generic quantitA(C; *) pertaining to th?e—th rNeaI—
with copies of a fundamental cell in which the particles areization of an ensemble dfl. configurations{C;®,... Cy/},

randomly arranged. The relevant equations are then solveshch withN,, particles, define its average by
only in the fundamental cell with periodicity boundary con-

ditions. 1 %i Np Np
In this section, we demonstrate how to evaluate en- <A>_N_ci=l WIGPIAG™), @)

semble averages for a nonuniform suspension on the basis of

a statistically uniform ensemble of random arrangements ofvhere theW(CiNP) are suitable weights. How should these
particles inside the fundamental cell, thus avoiding the genweights be chosen for the average defined to correspond to a
eration of an actual nonuniform ensemble. Using this devicesystem with prescribed macroscopic nonuniformity in the
the uniform ensemble can be used to derive the statisticglarticle position? Clearly, when all the weights are taken as
properties of a suspension with built-in, prescribed, spatiakqual to 1, we have the uniform-ensemble average, denoted
nonuniformity. by the index 0:

. 1 NC
A. Universal ensemble <A>0:N_z A(Cin). @)
Using a procedure which will be explained in Sec. IV C, ci=1
we construct a statistical ensemble by randomly arranging
N, nonoverlapping equal spherical particles with raditia B. Uniform and nonuniform averages
a cubic <_:e||_ of 5|d§L. . . ' Each realizatiorC® of the ensemble consists of a set of
In principle, this ensemble contains all possible configu- 1 o Y , "
rations, regular and uniform as well as nonuniform or even/€CtorsX, X,..., with x;'* denoting the position of the 'Sen—
heavily biased in the spatial arrangement of the particles. Itiéer of particle 1, 2,.N,. For the realizationC;®
evident that, if equal weight is assigned to each configuraz{xil,xiz,...,xiNP}, the (microscopi¢ number density is de-
tion, the resulting ensemble averages will correspond to #ined by
statistically homogeneous system. However, by giving the
configurations unequal weights, this same ensemble can also
mimic a spatially nonuniform system. It is for this reason
that we refer to the ensemble constructed as “universal.”
To illustrate the point by a simple cartoon-like example,and can be expanded in a Fourier series:
Fig. 1 shows two ensembles, A and B, each consisting of
three configurations with five particles. Ensemble A  n;(x)= >, hj(k)e k¥ (4
(roughly) describes a spatially uniform system, while en- K
semble B descri_bes a system in vyhich the_ accumglation Qfith the coefficients given by
particles in the right lower corner is more likely. Evidently,
instead of constructing ensemble B, the same statistical bias _ 1 _ 1M
can be obtained by assigning weights 1, 0, and 2, respec- ”i(k)zvf dxe'k'xni(x)zv 21 eloxr, (5
tively, to the configurations in ensemble A. This is obvious. “
The nontrivial question, to which we now provide an answerwhere V=L32 is the volume of the fundamental cell. The
is how to assign the weights in such a way thar@scribed  summation in(4) is extended to alk vectors compatible
spatial nonuniformity can be generated. with the cell. Fork=0 we evidently have

NP
ni()= 2 a(x=x), )
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- N, C. Field and particle quantities
(0)= —= 6
ni(0) \ o © Extending the previous considerations to a generic field
for all realizations and, therefore, quantity A(x), we expand it in a Fourier series as
(n)o=no (7) A= A(k)e™x, (16)
K
is the volume-averaged particle number density. For nonzero
k, we have where
- 1% Z(k)zlf dxe'k *A(x). (17)
(A))o=(y 2, " 8) Y
0 The nonuniform ensemble averagefoiith weightw(k) is
Thus, we can write given by
(M(K))o=Noko- 9

For k#0, the static structure fact@(k) of the uniform en-
semble is related ta by

- - N
<n<—k'>n<k>>o=6krkv—§s<k>. (10)

In order to generate weights for the nonuniform en-

semble, we introduce a functiom(x) that is regular in the

fundamental cell and with the same periodicity, and assign t

thei-th realizationC.Np the weightW(C:\'P) defined by

=— 2 w(x")

Da_

wic)

1 1 -
N—pf dxw(x)ni(x)=n—og w(k)nj(—k).

(11)

The relation between the function(x) and the spatial struc-

~ 1 ~ ~ - ‘
(A0 =(A(0)o+ — 3 3 Wk )T~k HAK))oe ™,
0 k#0 K’

(18)
where the averages with subscript 0 are taken over the ho-

mogeneous ensemble defineo[:h)u;This form is found after

observing that, fork#0, (n(—k)A(0))o=0 and (A(k))o
Rather than dealing with complex exponentials, for ac-

tual computations it is more convenient to make use of Fou-

Qier expansions in a real form. For a generic field quantity

A(X) the Fourier representation analogoug16) is

A(x)=A(0) + k})o {A°(k)cog k- x)+AS(k)sin(k-x)},
(19

wherek>0 appended to the summation restricts it to wave
numbers all of whose components are positive, and

~ 2
Ac(k)zvf dxA(x)cogk-x), (20

ture of the ensemble is readily found by calculating the av-

erage number density with the above-defined weights. For

k=0 we have

- \ — ~
(R(0))=noy- 2 WK)(R(—K))o=no(0), (12)
p
where we usd1) with (6) and (11), from which w(0)=1.

For k+#0,

N
- 13 ~ ~ . S(k)
(R(K)) = 2 W(CP)Ti(k) =W(k) (13
I\|c|=l V
where we usg10). We thus conclude that, if the desired
average number density is given by

(ME)=n(x), (14)

we can generate it by assigning to each configuration of the

ensemble a weight according (bl), where the functionv is
given in terms of its Fourier coefficients by

W(k) = g5 1(k), (15

vV
S(k)
in which n(k) is the Fourier coefficient of the prescribed
number density(14).

=§f dxA(x)sin(k-x). (21

In addition to field variables, the averages of quantities
A< carried by each particle are also of interest. Examples
are the translational and angular velocity, the force multi-
poles, and others. In order to calculate these averages, we
first transformA*“ to a field variable by writing

Np
AX)= D S(x—X)A. (22)
a=1
The Fourier coefficients are then
- 2 Np
AYK) = > A*cogk-x), (23
a=1
- 2 No
ANk =y > A%sin(k-x%), (24)
a=1

and their averages are readily calculated ad 8). After this
step, the particle average is calculated from

(A)(X)

(A)P(x)= o

(29
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4 m B 2 Np
(k) =y El sin(k-x9). (31)

a=

The ensemble average of the Fourier expangk® there-
fore takes the form

(AY(X)=(A(0))o+ e[ (A%(K))s cog k- X)

+(A())ssink-x)], (32
since all other coefficients vanish.
> 7 For particle average$25) gives, up taO(e),
ny
1 - ~
FIG. 2. Example of linear sinusoidal nonuniformity. (AP = n_o{<A(o)>O+ e[ (A®(k))scogk-x)

+((AK))s— (AO))sink-x)1}. (33

The need for normalization b§n)(x) is readily proven by ~Equations(32) and(33) show another reason why the intro-
considering the special case Af'=1. With this device, we duction of parametee is useful: The terms multiplied by
can treat in a unified way both field and particle quantitiesoriginate exclusively from the spatial nonuniformity and

through their Fourier coefficient&(k). therefore, by focusing on them, we are able to identify un-
ambiguously the effect of this nonuniformity even in the
D. Linear sinusoidal nonuniformity presence of the inevitable statistical noise.

In applications of the statistical method described in thislll. PARAMETERIZATION

paper, we limit ourselves to a nonuniform suspension with | this paper, we study three kinds of mobility problems
weak spatial nonuniformity specified by the number densityfor nonuniform suspensions, namely, the flow induced by
(Fig. 2, mobile particles subject to constant forgeferred to as the
_ - “force problem” in the following), constant torque(the

N()=nol 1+ esin(k-x)]. (26) “torque problem”), or shear bulk flow(the “shear prob-
It will be argued, however, that the results found in this waylem”). We carry out direct numerical simulations by solving
extend to general weak nonuniformities. (26) we takelk|  the Stokes equations for each configuration of the ensemble
equal in modulus to the smallest wave numbgr27/L by the method described in Sec. IV. From the results for each
and oriented in one of the three spatial directions. Hencerealization of the ensemble, we calculate statistical averages
forth, k will denote one of these three wave-number vectorsaccording to the relations developed in the previous section.
The parametere is the degree of nonuniformity, and we It is useful to present the results using suitable param-
present results valid to first order in this quantity. In prin- eterization, which we now describe. For convenience, we
ciple, since the Stokes problem that we study is linear, lin-nake use of a unified notation which is first introduced in the
earization ine enables us to use Fourier superposition tocontext of the force problem, and then extended to the other
describe weak nonuniformities of any form. It should becases.
noted that, to first order ik included, the volume fractiog

has the same spatial dependéefice A. Force problem

d(X)= o[ 1L+ e sin(k-x)]+O(K?), (27) For the force problem, i.e., sedimentation, we conduct
. _ . 3 numerical simulations where the same foFggis applied to
in which ¢o=3mang. each particle. The uniform version of this problem is there-

With this choice ofn(x), all the weight coefficients van-  fore characterized by a single fundamental vector,
ish except E
0

We= ;
=6n0%. (28) " 6mua
with u the fluid viscosity, and, therefore, any vectorial de-
Therefore, the nonuniform ensemble average of the Fourigpendent variablg, such as the mean settling velocity, must
coefficientsA becomes take the form

~ ~ ~ _ 0

(A)=(A)o+ e(A)s, (29 (P)=[PJFWE. 39
where[p]g is a coefficient calculated numerically by taking
the ensemble average of the valuespofHere and in the

(34
W(0)=1, WS(K)

where the nonuniform pa(TI&)S is given by

~ 1V _ - following we use subscrigt for all quantities which refer to
(A)s=35 %ms(k)A)o, (30)  the applied force problem.
When we turn to the nonuniform case, in addition to
with, on the basis of5), We, the wave vectok that specifies the direction of the
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nonuniformity is also introduced. Therefore, it must be pos-

sible to parameterize the nonuniform part of each vectorial

dependent variable as
(p)=[PIEW+[PleWe, (36)

where the superscriptsand.L are based on the direction of

unit wave vectok and
W= (kk)- W, (37)
WE=(I—KkK)- W . (39)

CIearIyWF=W“F+W§ . The only characteristic pseudovec-

tor is
awE=KxXW;g, (39)

which is perpendicular t&; the factora is included so that

¢ has the dimensions of angular velocity. Therefore, any

pseudovectog must be parameterized as
q=[qlrer .

Note thatak X et =—W{ , and the parallel compones\
is zero.

(40)

B. Torque problem

In the second problem, we apply a constant torgjg¢o
each particle and use the subscripto denote the pertinent

Faxén-like relations for a nonuniform suspension 2487
WE=a(kk)- (E*-K), 47
Wi=a(l—kk)- (E* k), (48)

and one characteristic pseudovector,
wt=kX (E*-K). (49)

Note thatk X awk=— W .

D. Summary

Because of the linearity of Stokes flow, the results for
these three problems can be superposed. Therefore, vectors
(p) and pseudovectorg]) are generally parameterized as

(Py=[PIRWe+[pIEWE+[pTEWE+[ply Wy
+[PIEWE+[plgWe, (50)

and

<q>=[q]$an+[q]twt+[q]4w4+[q]#w#+[q]éw(t5-l)

IV. NUMERICAL METHOD

We now introduce suitable expressions for the quantities
on which we focus in this paper, namely, the average mixture

quantities. Here, for the uniform case, pseudovectors must beglocity (or volumetric fluy, denoted byu,), the average

parameterized as

g=[al}er, (41)

with
= 87::a3 . (42)

For the nonuniform case we have a single vector,

Wi =akX wr, (43)
and two pseudovectors,

o= (k- @)k, (44)

wh=(1—kK)- or. (45)

Note thatk X W = — aewt .

C. Shear problem

In the third problem, we apply linear shear flow, so that,

mixture angular velocity(€,,), the average particle veloc-
ity, (U), and the average particle angular velogi€¥). The
numerical procedures developed earlier and applied to the
above quantities are also outlined.

A. Many-body problem

Input to the nonuniform ensemble averaging procedure
is the solution of the Stokes many-body problem, which can
be expressed in the form of a generalized mobility equation,

u-u~ F

Q-Q~ T
—E* |7 K (52
—u F

whereU and Q are translational and rotational velocities of
the particles, and)” and Q” are defined by

even in the uniform case, there is a velocity field imposed

given by

u”(x)=E~-x, (46)

whereE” is the rate-of-strain tensor of the flow and is sym-

1

U (a)=477a2 LadS(Y)“ : (53

Q*(a)= d 2 y-xxu (54)
(oz)—4m12 o Sy) 2612(y X¥)Xu™(y).

Furthermore E” andl{” are, respectively, the strain tensor

metric and traceless. The corresponding results will carry aand higher order velocity moments of the imposed fioty
index E. Because we cannot construct any vector orM is the generalized mobility matrix, arig T, S, and.F are

pseudovector fromE™ only, there cannot be any uniform
contribution to vectorp or pseudovectorsg for the shear

the force, torque, stresslet, and higher order force moments
of the particle$:*? Detailed definitions are summarized in

problem. In the nonuniform case, one can construct twdhe Appendix. When” is itself a Stokes velocity field and,

characteristic vectors,

therefore, biharmonic, we have
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2

a o 1
1+?;V2)u(x), (55) J(r)=

U*(a)= -
r

r

rr
I+ (59)

Q7 () =3V XU (xY). (56)  This is the same procedure as that for the analysis of a peri-
The three problems we study are mobility problems, sgdic system used by Ladftiand applied to an infinite system
F andT are prescribed. For the imposed flow problem, theid Ref. 7. Upon using the convolution relation (67), the
quantitiesU”, Q*, E*, andl/* are also given. Therefore, Fourier coefficient of the relative velocity,—u”) is given
(52) can be solved, and we obtaih Q, S, and F for each by

configuration. 11 ki) 2 ik
To solve the many-body problem, we use the same nu- (T ).(k)= — _( 8ij— L) > k"'f}”@ k), (60)
merical code as in previous papéf<; which is based on the © k? k? Ja=o nb =%

method developed by Mo and SangahiThis step is the where F(k) is the Fourier coefficient of the force momeft

most time-consuming part of the present method. In thg, o5 form, the cosine and sine coefficients are
code,F is expressed by the coefficients of spherical harmon-

ics in Lamb’s general solutiof?**In order to save time, we N 1 kiK; | < K = com)

use solutions of the many-body problems obtained in Refs.  (Un)i(K)= e 5~ e ngo =)" (ZT)!fjc,k...(k)

22 and 27, to which we add new calculations for many other

values of both volume fractiog and particle numbeN,, . kantt sani D)

For consistency we use the same parameters, taking into ac- - mﬂ,k._. (k) |, (61)

count multipoles up to fifth order. In the final processing of

the data, however, only multipoles up to the fourth order are 11 kik; * E” ~ o2

included. (Up, i(k):_ﬁ 5”‘—? Z (=)" 2n)! 2EM(k)
For several cases, we also used the Stokesian dynamics K n=o '

method? extended to a periodic systefsee the Appendix k2L

and have confirmed that the two methods give the same re- b FEETT (k) |, (62)

(2n+1)! 7

sults within the accuracy of multipole truncation. _ -

where (k) and F3(k) are the cosine and sine coefficients
B. Mixture velocity of the force moment, respectively. Equatit0) is equiva-
lent to (8.2) in the paper by Tanksley and Prosper&tti.

Besides particle quantities suchldsaand 2, we are also - . .
P g Note that the coefficient witk=0 should be dropped in

interested inu,,, the volumetric flux of the mixture. Tank- : . 37 oy e
sley and Prosperetfi gave a detailed expression af, in order for the velocity to be nonsinguf3’ This specifies

terms of Lamb coefficients; here, we give another expressioH1e fr?‘m? of reference as the volu_me average of the _rmxture
of u velocity in the fundamental cell is then zero. This is the
m- . . ) T
For a single realization of the ensemble, the mixture Vephysmal meaning of Batchelor’s renormalization.
locity uy, is given by the integraf C. Ensembles
N
1 p f . . . .
Un(X) = UP(X) = — d I(x—y)-f(y), Our interest lies in quantities which correspond to large
m() *) 8mu az'l s SYIx=Y)- 1Y) (ideally infinite) systems, for whiclk— 0. For each value of
(57 ¢, therefore, it is necessary to construct ensembles that cor-
whereu” is the imposed flowy is the Green’s function of réspond to different values &fso as to be able to calculate
the problem, and is the force density at positiop on the  this limit. This requires considering ensembles with different
surface of thex-th particle. numbers of particlesl, as
_ Note thatum giveq b_y (57 is not only defineq in thg _ 2ma  [6m2p| 13
fluid domain, but also inside the particles, where, in fact, itis ka=——= N

identical to the rigid-body value, L

U (%)= U+ QX (58) For ¢ between 1% and 50%, we construct ensembles (_)f be-

m ' tween 256 and 2048 configurations with 10—160 particles.

because it is the Stokes solution that satisfies this equation dtatistical errors in the ensemble avera@®@slecrease rather
the particle surface due to the no-slip condition. Thereforeslowly as 14/N.. Considerations of computational time force
(57) not only gives the fluid velocity in the fluid domain, but us to strike a compromise between the number of configura-
also the volumetric flux of the mixture in the whole domain. tions and the residual statistical error, especially for large

In the present theory, we need the Fourier coefficients ohumbers of particles. Table | shows the number of configu-
the mixture velocity rather tham,,(x) itself. In this case, we rations we use in the different ensembles.
can avoid the complexity of the Ewald summation for peri-  The ensembles are constructed as follows. For volume
odic boundary conditions and use the expression valid in afractions less than 50%, we start by randomly arranging the
infinite volume by modifying wave vectde from a continu-  particles in the cell making sure that no overlap occurs, and
ous to a discrete variablé(r) is then the Oseen tensor given subject them to a random walk, displacing each one of them
by taking care to avoid overlaps at each step. AfterNJOSteps

(63)

p
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TABLE |. Number of configurations in the ensemble used in the simula- 1.2
tions.
No. of particlesN, No. of configurationsN, 17
10-16 2048
17-79 1024 . 08 r
80-150 512 %
160 256 06 |

04 r

per particle, we store the resultant configuration as a member

of the ensemble. The initial configuration is regenerated ev- 0.2
ery time. For¢=50%, we start by arranging th¢, particles

in a regular array and execute 10Q0random steps after

which we store the resulting configuration. This configura-FIG. 3. Comparison between the structure factor given by the Percus—
tion is used as the starting condition for generating the nexYevick solutionSey(k) in (64) (solid ling) andS(k) numerically calculated

. . m (69) from the configurations used in the present workder0.15. The
one. By repeating this procedure’ we construct ensembles gosed circles are calculated wik=2=/L, and the open circles are with

N, configurations. higher spatial modes.
The static structure factor for hard spheres in infinite
space is isotropic and is approximated by the analytical so-
lution of the Percus—YevickPY) integral equatioft —*°as sembles are not strictly isotropic, they give rise to a structure
factor that is essentially indistinguishable from the Percus—

Spy(K)=[1—ngc(2ka)] 4, (64 vYevick distribution in infinite space in the wave vectors
wheren, is the number density, ant(2ka) is the Fourier ~range greater than7L. In particular, one may therefore
transform of the directisotropig correlation function given ~expect that the linear sinusoidal nonuniformity with the
by smallest wave numbdcis not affected by the periodicity.

For all our ensembles, Fig. 4 shows the unscaled non-

TUX) = — 32ma’ a(sinX— X cosX) uniform averages oh®(k) for the case of linear sinusoidal
X3 nonuniformity. According td30), this quantity is defined by
2
+§{2x sinX— (X2—2)cosX—2} Ss(k)=2—,\h’<[ﬁs(k)]2>o- (70)

Every point represents an ensemble average for given values
+ l{(4X3—24X)sinX of ¢ and N?. A comparison_ of Fig. 4 with Fig. 3 in a previ-
x3 ous papef, shows that, while some results for volume frac-
tions ¢=0.15, 0.25, and 0.35 have been reused as mentioned

vd aon2 before, many more ensembles have been added since then.
(X7 = 12X"+ 24)cosX + 24}, (65) Note that the universal ensembile is translationally invariant,
B so that the averagf(n©)?), is equal to{(n%)?), within sta-
whereX=2ka, and tistical accuracy. Therefor&(k) in (70) is equal toS(k) in
(1+2¢)?
a(d)=-—— 7, (66)
(1=¢) 001 -+
0.02 «
) (1+3¢)° 67 jo03 -
=—6¢p——, 6 s °
Bl)=—66"— = s -
06 | 1015
(= 2 Q1207 68 = e 058 -
PET2 agt D ol s Jozg -
Figure 3 shows a comparison betweasy (k) and the st_ruc- M 8:3’3 :
ture factorS(k) for our ensembles for a volume fraction of 02 st 1050 -
15%. We calculate this quantity according to e
Ve oL 0 02 04 06 08 1 12
S(k) == (NKIN(=K))o, (69) ka
p

considering not onljk=27/L, but also the higher modes, FIG. 4. Structure factoB,(k) calculated according t(70) for the smallest

._.wave number for each cell of all ensembles used in this study with volume
\/Ek, \/§k’ 2k, and so on. For each wave vector, the pDlmfraction ¢ between 0.01 and 0.50 and particle numNgrbetween 10 and

plotted in Fig. 3 is the_ average over all different directions of 160, The lines are the Percus—Yevick soluti(k) in (64) for each vol-
the wave vector. This result shows that, although our ensme fraction.
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(69). In Fig. 4, we also ploSpy(k) for reference. This shows 2. Particle quantities
that the relative error ob(k) from Spy(k) is independent of In order to calculate the average of the particle velocity
¢ and around 6-8%. _ _ U for each configuration, we find its Fourier coefficients
In the calculations that follow, we use this numerically 0(0) U and Us according to(23) and (24), and average

computedSy(k) as the structure factor for the definition of them, ov,er the configurations to findJ(0)) ' (U°)., and
the nonuniform probability weights i28). ~ . O s’

(U®)s. From the numerical results, the uniform parts for the
torque and shear problems, the cosine coefficient of the non-
uniform part for the force problem, and the sine coefficients

Here we show how to evaluate the nonuniform ensemblégor the torque and shear problems vanish. Using parameter-
averages with the universal ensembles for each one of thgations in the form of50), we then have

quantities defined above. o\ p 0 _ sl
(U=U")"(x)=[U]gWg+ esin(k-x)([U]zWg

D. Averaging and parameterization

Iypa/L Iya/L
1. Field quantities FLUTRWe) + e cogk-x)[UTrWy
I \p/l LypsL
The Fourier coefficients of the mixture velocity defined +ecosk-x)([U]gWe+[UJgWe).
by (61) and (62) are averaged according {@9) for each (78

enserr_]ble. Sujce the coefﬁment W0 h_as begn_dropped, In a similar way, for the particle angular veloci€y, we have
there is no uniform part and, since the mixture is incompress-

ible as a whole, (Q—0")P(x)=[Q]IW+ € cogk-X)[ Q]F wp
V-u,=0, (71) + e sin(k-x) ([Q]rer+[Q]rer)
as is obvious from(60). This implies that the parallel com- +esink-x)[ Qg wg . (79

onent of the nonuniform part af,, should be zero. The
P P " Note that(U”)" and(Q~)" are the particle averages of the

numerical results also indicate that the cosine coefficient o tthe i d velocity defi 8 and in(54
the nonuniform parts for the force problem and the sine comoments of the imposed velocity de ined8) and in(54).

efficients for torque and shear problems are less than 10%
relative to the nonzero coefficients at most. This is of the3 Slip velocities
order of statistical error which may be expected, and we™ P

therefore assume they vanish. If we retain only the nonzero The translational slip velocityu,) is the average trans-

terms in the notation in Sec. IV C, we then have lational velocity of the particles relative to the mixture,
(Un(K)s=[Umle W, (72) (up)=(U=U")P—(up—u”). (80)
~ _ Ll Upon inserting expressiai®s) for U”(«) in (22) and then in
(Un(k))s=[UmlrWr 79 (25) to calculatg/U*)", because of the presence of the factor
(T5(K))s=[UnleWe | (74)  Ox=x%), we simply find
. a2
from which <U°°>P: 1+ EVZ) Uw(X). (82)
—1® — ink- LwJ_
(Um= U () = esin(k-x)[um]We Furthermore, in the three cases studied in this pag¢k) is
+ ecogk-X)[ U]t W1 either a constant or a linear functionf®o the second term
kX[ u W @5 can be dropped with the result,
+ecogk-x)[u .
meE (Us)= (U~ (). (82

The three parameters denoted by square brackets in the pa- F terizati f th ticl locity (@9)
rameterizations(72)—(74) are the building blocks for the d rfotrE pafatme erlzla |$n .;75) € par: icle velocity §
analysis of nonuniform suspensions given in the next sectiorf '@ OF the mixture velocity 1 » We have

The angular velocity of the mixtur&,,,, is (U)X =[UxT2We+ e sin(k-X) ([UyTEWE+[uyJEWE)
Q.=3VXup,. (76) +ecogk-x)[uy W+

Substituting(75), we have +ecogk ) ([UJEWe+[UaJEWe), (83

<Qm— ;VXU‘”>(X)=scos(k-x);[um]fzwﬁ where

[uslR=[UI, (84)

+esin(k~x);[um]#w# [uaJe=[U1E, (85)

. [usJe=[UJr—[unl, (86)

—esinkx) 3 [unlewe . (77) [usJ=[U S~ [Unl?, (87)
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[usle=[UlE, (88) 1

S . 0.4
which, in the present case, using the same argument as be-

fore, becomes
02}

01 -

02~

[usJe=[UJe—[Unle. (89) 08 04
05 =

The slip angular velocity2, is defined in a similar way by 06 | ) g °
) ) . 0 -
(04)=(Q-07)°—(Q,— 3V XU7), (90) 25
35+

40 .

45 .

50 o

(Q4)=(Q)"—(Qp). (91)

0

[UJF
COO0O0O0O0OOO0O0O00O00O0
QBEBRWONN==200000

From the parameterization of the angular particle velocity in 0 02 04 06 08 1 1.2
(79) and of the angular mixture velocity ifY7), ka
(Q)(x)= [QA]‘?'WT+ ecogk-X)[Q,JF wr FIG. 5. Uniform parf U]2 of the particle velocity for the force problem as
a function ofk. The points are the numerically calculated ensemble averages
+esin(k- X)([QA]‘_‘rwq__q_ [QA]}ra’#) and the lines least-squares fits. For this problgdi)? is equal to the uni-
form part[u,]2 of the slip velocity.
+esink-x)[Q, Jgwt (92
where
) AlVE= im[U12=U(4). (99)
[QaJe=[0JF— 5 [unlt, (93 o
o o Therefore,A[U]g is the sedimentation velocity extrapolated
[Qa]7=[Q]5, (94 to infinite cell size. As Fig. 6 shows, it is well fitted by
[Qalh=r07, (95) U(¢)=(1—)>>> 34, (100
K Note that our numerical solution is affected by truncation of
[ ]7=[Q]F— E[um]#’ (96)  the multipole expansion because we solve the many-body

problems including multipoles only up to fifth order.
K The coefficient B(¢) reflects the effect of the
[QATE=[QIE+ = [upmlt. (97)  periodicity>*>* which arises from the difference between
2 the sedimentation velocities of random and regular arthys.
Several heuristic arguments have been proposed which have
V. RESULTS led to a relation betweeB andu, , the effective viscosity of

. . the suspension normalized by the fluid viscosity. Mo and
We now present and discuss the results of the multipar 4 y y

e ESEL . ! ngari® pr relation which, in our notation, i
ticle simulations in light of the framework established earller.Sa gant” proposed a refatio ch, in our notation, is
We focus on the slip velocityfu,), the mixture velocity

[P 1.7601 S(0)
(um—u™), and the slip angular velocit{€2,). These quan- Bl F=— 6By’ (101
tities are parameterized as (83), (75), and (92), respec- ™ '
tively, and we will examine the numerical coefficients in
these parameterizations denoted by square brackets. These
coefficients depend on both the wave vedtand the vol- 1 . ; "
i ficients of [UJg: A [
ume fractione. 08 | coefficients of [U]r 25
A. Velocities for the force problem 06
We start by considering the velocities in the force prob- 04 |
lem. 02 b
Figure 5 shows, for different volume fractions between
1% and 50%, straight-line fits to the coefficients of the pa- 0 oo O
rameterization of the uniform part ¢tJ—U”)P: 02| _/9"’
&
e
[U1%(k, ) =AY+ KBIVTE, (98) 04 . . . . .
0 0.1 0.2 0.3 0.4 0.5

The fitting is done by least squares. The error with which
(98) approximates the numerical results is smaller than the
symbols used to grapA[U]g and B[U](F) in Fig. 6. The con- FIG. 6. Coef_ficientsA andB of thg linear f_it(98) to [U]? as func_tions of
stant termA[U]g is the hindrance function for sedimentation volume fraction¢. A coincides with the hindrance functidd(¢) in (99)

» andB is the effect of the periodicity of the system. Solid and dashed lines
U(¢p): are fits(100) for A and the mode{101) for B, respectively.

volume fraction ¢
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FIG. 7. Comparison of g,—1)/¢ calculated directly by averaging the

stresslets for the uniform shear probléine) and from the suggestiai0l) ~ FIG. 8. Comparison of(dU/d¢), [us]t, and[u,]¢ for a nonuniform

given in Ref. 31. suspension. The three quantities should coincide if the relation’ between the
force on the particles and the slip velocity did not contain a Retype
correction.

in which S(0) is the structure factor fok=0. This is also

plotted by the dashed line in Fig. 6, whewg is evaluated

from the uniform shear problem as the average stresslets tjon evaluated at the local volume fraction. For the linear
the standard walf»*>**Although the mode{101) captures  sinusoidal nonuniformity27), we would then have

the qualitative behavior d8, there is a significant difference

between fu,—1)/¢ calculated directly and the value de- U(¢)=U(¢O)+¢o£esin(k-x). (106
duced from(102). To better illustrate this difference, Fig. 7 de

shows (u,—1)/¢ calculated from(101) which, in the dilute Figure 8 showgu,]L, [usJ:, and ¢(dU/de), where the

limit, should tend toward the Einstein coefficient 5/2 which geriyative of the hindrance function is evaluated by numeri-
multiplies theO(¢) term of 1, . A similar difference can be ¢ gjfferentiation of the results fdiu,]2. We see that the
observed in Fig. 6 of our previous paﬁér?l’heose results  gimple hypothesis works quite well for the parallel compo-
suggest that the relationship betweepand BIYJF is more  nent, but not for the perpendicular one.

complex than(101) would imply. To address this difference, it is useful to remember Fax-
The coefficients for the nonuniform parts dﬂ—Um>P en’s law for a single particle,
and{u,—u”) can be fitted as Fa

2

a
1+ —V?

vt 6

u’(x*), (107

1 | | | whereu’ is the velocity field except for the contribution of
[U]g=—;DIVIF+ AlVIF + kBIVTF, (103  particlea. It is reasonable to expect a similar contribution in

k the present case. Since the mixture velocity only has a
perpendicular component, this contribution would vanish for

[um]é:%D[um]é+A[um]§+kB[um]é_ (104  the parallel one, which would account for the good fit of
K [u,]F and(108).
For k—0, we encounter in term® of the perpendicular We thus introduce a coefficier(¢;k), by
components the same divergence found in Ref. 27. This Fo
arises from the lowest order multipole {60). As noted in U(e) GWMa=<uA)—C(¢;k)a2V2(um). (108

Ref. 27, this divergence is physical in that it is due to the fact
that, ask—0, the width (and therefore the weighof the Physically, this equation represents an extension of ifaxe
heavier and lighter bands of the mixture increases, while théw (107) and of the dilute-limit theory by Geigeniter and
shear force which retards their fall does not. These two diMazur*? to the finite volume fraction. By extrapolating to
verging terms are found to be equal within our numericallarge system size, from the previous results, we find
accuracy and therefore cancel out upon forming the perpen-

dicular component of the slip velocity, which is therefore C(¢)= Iim%([uA]”F—[uA]é). (109
given by k—ok @[ Unle
[UA]#:A[UA]J'E*FKB[LJA]J'E. (105 Figure 9 shows the values €f( ¢) calculated from this ex-

| | pression together with the reference value of 1/6 suggested

The coefficientsAlUalF andBlUalF are calculated by fitting a by Faxer's law (107). The bars indicate the error in fitting of
linear k dependence to the differen¢g6). the least-squares procedure. Convergence is poor at low vol-
In order to understand these results, the simplest hypothume fractions where, due to the increased available phase-
esis is that the slip velocity is given by the hindrance func-space volume, a large number of configurations is necessary
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0.4 - - - - - Feuilleboi? studied the sedimentation of a dilute sus-
pension that exhibited sinusoidal as well as step-like nonuni-
03 I formities by taking only two-body interactions into account.
In the dilute limit, his results are consistent with the present
_ } ones?’
g 02 -T{i i o
Tl 3 B. Angular velocities for the torque problem
01} : ¢ ] For fixed ¢, the uniform part of the particle angular ve-
t g % locity has essentially nk dependence and is well fitted by a
l constant,
0 s s . .
0
0 0.1 0.2 0.3 0.4 0.5 [Q]g(k,(ﬁ) ZA[Q]T:Q(¢), (113)

volume fraction ¢
o i ) ) where()(¢) is the hindrance function for the torque problem.
FIG. 9. CoefficientC(¢) of the Faxe-type correction of the relation be-

tween force on the particles and the slip velocity defineLdg). The line Figure 10 ShOWSQ(d’)' which is fitted well by
is the dilute-limit value 1/6. The fitting error bars are also shown. QO(p)=(1— ¢)1.50—0.41¢ (114

The nonuniform parts of) can be fitted by

for gqod stat.istical averaging. At _high volume fr_actions, the [Q]QZA[mh kZC[Qﬂ, (115
error is possibly related to truncation of the multipole expan- | |
sion. Nevertheless, we find general consistency between our [Q];=Al%T+Kk2Clr, (116

results and107). It should be stressed that, sin€&¢) is A 4 th ) di . h h i
independent ok, by superposition and linearity, the result S expected, there Is no diverging term here. The contribu-

(108 holds not only for the special forit26) of n(x) but, to tion of the mixture to the angular veloci§), is

order (@/L)?, for any other weak nonuniformity as well. K 2 [ plumlt .
The Faxa term in Eq.(108) was also studied in our [Qm]#=§[um]#=3 S— AT | (117
previous papef? where Fig. 10 is, in the present notation, k

C(#)/U(¢). The present results are consistent with the earthe |eading terms of: and (), are now different and there

lier ones except for the last point in the latter correspondings no cancellation in the calculation of the slip angular ve-
to $=0.35. Due to the smaller number of simulations con-acity, which is

ducted for that earlier study, it is likely that that point is R .
erroneous. [Q, ] =A%l 4 k2Cllr, (118
In conclusion, we have found that the averages of the

slip velocity are given by If the local slip angular velocity were only dependent on

the local value of the rotational hindrance function, one

[us12=U(¢), (110  would expect that
o an Q($)To=8mua*(Qy), (119
u = R
[ualr ¢d¢ where
N ) N du dQ
[ualp+C(P)k [um]p=¢@- (112 Q(¢)=Q(¢o)+¢ow68Iﬂ(k'X), (120
so that
: . . . . [Q:17=0(¢), (129
coefficient of [Q]$: A O
09 r . I 1 dQ
' [QA]T:[QA]T:(ﬁ%a (122
081 which is tested numerically in Fig. 11. Unlike the force case,
07+ | the numerical results evidently support the conjectdd®),
which conforms with the conventional Faxéaw for torque
0.6 1 on a single particle. The same argument presented before in
connection with(108) can also be used to conclude that
05 T (119 holds to order &/L)? for any weak spatial nonunifor-
mity.
0.4 . . . .
0 0.1 0.2 0.3 0.4 0.5
volume fraction ¢ C. Further examples of the effect of nonuniformity
FIG. 10. Hindrance function for rotatioA=(¢) as a function of the For uniform suspensions, the slip velocity under applied
volume fraction. torque, the slip angular velocity for sedimentation, and both
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0.1 ¢

-02

031
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-0.5

0 0.1 0.2 0.3 0.4 0.5
volume fraction ¢

0 0.1 0.2 0.3 0.4 0.5

volume fraction ¢

; I Lo ;
FIG. 11. Comparison off(d()/d¢), [Q]r, and[€,]y in a nonuniform 15 15 coefficient of the linear term irk in fits of the numerical results
suspension. The very close similarity among the three quantities implies th%r [usTs, [uslL, and[u ]t for the nonuniform case. Note that, while

the mean torque is directly related to the slip angular velocity without a " ) : .
. - these quantities would all vanish for a uniform suspension, they are clearly
Faxen-type correction. - . - o
nonzero in the presence of nonuniformity. The fitting error bars are also
shown.

slip and slip-angular velocities for imposed shear all vanish.

The situation is different in the presence of spatial nonuni-  lim D[“m]é=5¢>. (130
formities as we now show. $—0

The computed average velocities for the torque problenThe diverging terms again cancel upon forming the slip ve-
can be fitted as locity and the leading term of this quantity @(k),

L _ 1k Aluale
, (123 [up]g=KkAMAlE, (131

[U]#:k(izow]mw]#
k The A coefficients of the parallel and perpendicular compo-
nents are also shown in Fig. 12 by circles and triangles,
_ (124) respectively. The fitting error bars are inscribed in the sym-
bols. Again, both of these quantities are clearly nonzero.
The average angular velocity coefficients in the force
problem can be fitted as

1
[Uml7= k( = DLt 4 AlUmly

It is shown analytically in Ref. 27 that

lim Dlumlr =3, (125 [0 i i
¢—0 [Q]F=k % + AR+ kBIYE || (132
Similar to the force problem, the diverging terms fand
uy, are identical, and the leading term of the slip velocity is k [ DlumlF " B
O(K) [Qm]ézz 2 + AlUmlr 4 kBlUmlF || (133
L
[ua]r =KkAlalT, (126 where we have diverging terms which, again, are equal, so

- . N that the | i f the sli I locityQgk),
The coefficientAl'alT is shown by squares in Fig. 12. The at the leading order of the slip angular velocitydgk)

error bars inscribed in the symbols give an idea of the fitting [QAlE= k(A[QAJéJr kB[QA]é)_ (134
1L
error for this quantityAlUsl7 is found to be rather small, but
systematically nonzero.
For the shear problem, the parallel componentatan

The circles in Fig. 13 show!22)F with the fitting error bars.
The corresponding results for the shear problem take the

be fitted as form
I [uy! DICTF |
[UJe=kAE, (127) [Q]E=K? 7+A[91F : (135
and the perpendicular componentslbfindu,, as
N D[um]é [ ]L
1 =—— Um
with identical diverging terms so that the leading order of the
1 slip angular velocity iO(k?),
[Umle= k( = DlUmle + Allnle |, (129 P ang { ()
k [Q,]e=K2A I, (137
where, forD[Umle Ref. 27 shows that Figure 13 shows thig coefficient with the fitting error bars.
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0.3 — . for rotation shown in Fig. 10 and fitted as a functiongpby
Aof [QA]E u expression(114), andT, is the external torque applied to the
o [QJF © particles.

An analogous relation for the translational slip velocity,
however, does not hold. This quantity contains a finite-size
041l | correction proportional t&?(u,), just as in the case of the
familiar Faxe law for a single particle,

OF ' (U)P = (um)=C(¢)a°V¥(up) +U( ) Fo (139
W " " 6mua’
. . . _ . in which (U)? is the mean particle translational velocity,
01 0 0.1 0.2 0.3 0.4 05 U(¢) is the (translational hindrance function, andé, the
volume fraction & external force applied to the particles. The dependence of

coefficientC(¢) on the volume fraction is shown in Fig. 9
| b , : " and, within our numerical accuracy, is consistent with the
for [Q,]f and[Q, ] for the nonuniform case. While these quantities would | | f1/6 th ticl | fracti tends t
all vanish for a uniform suspension, they are clearly nonzero in the presenclésua value o as the pariicie volume firaction tends to-
of nonuniformity. The fitting error bars are also shown. ward zero.
The resultg138 and (139 represent generalizations of
' _ the single-particle Faxelaws of Stokes flow to a spatially
~ These results show that, for nonuniform suspensions, thgonuniform suspension. The spatial nonuniformity that we
slip velocity(u,) is nonzero even when no force acts on thehave included in our study is limited to the particle number

particles, and the slip angular velocitf2,) is nonzero even  density, i.e., the one-body distribution function.
in the absence of torque. This behavior is quite different from

that encountered in the case of uniform suspensions and K
suggests that uniform suspension simulations can only give a
partial view of the general behavior of a suspension. In par-  The authors wish to acknowledge support by DOE under
ticular, characterization of nonuniform suspensions require§rant No. DE-FG02-99ER14966.

the introduction of additional “effective propertie¢.g., the

Faxen coefficien} with respect to those sufficient to describe APPENDIX: DEFINITIONS FOR THE GENERALIZED

a uniform suspension. This issue has been partially addressefoBILITY PROBLEM

in Ref. 22 and will be pursued further in future work.

FIG. 13. CoefficientA of the linear term irk in fits of the numerical results
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The generalized mobility equatio(§?2), is derived from
the integral equatio57).
VI CONCLUSIONS The velocity and force moments are defined by

In the first part of this paper we have shown how aver-

ages that correspond to a spatially nonuniform statistical en- (n) _ 1 f _ya\n o
semble can be calculated on the basis of a uniform one. The w"k“'(a) 41ra? SadS(y)(y Xk (¥ AD
method consists in attributing to each realization of the uni-
fo_rm ensemble a suitable vyeig_ht, which_is constructed ex- f}nk) (a):_f dS(y)(y—x9)! fi(y). (A2)
plicitly starting from an arbitrarily prescribed macroscopic T s
particle number density distribution. E* andi/” are defined in terms af”(x) by

We have applied this general theory to the simple case of
weak sinusoidal nonuniformity of the number density distri- " 3 -
bution of equal spheres in a viscous suspension for three = (@)= Al SadS(y)E[(y—x ur(y)
mobility problems: sedimentation, the applied torque, and
imposed bulk shear flow. In spite of the special form of the U (Y)(y—x9], (A3)
nonuniformity, we have shown that the results are valid in
gengral to _second order in the rati_a/L)z, wherea is the U (@)= 1 J' dS(y) (y—x)"u(y). (A4)
particle radius and. the macroscopic length scale. 4mral)se

We have found that, in a nonuniform suspension, the . . o
. o . Corresponding expressions fof* and 2* were presented
average slip angular velocity, i.e., the relative angular veloc-~ . =7t
. . . arlier in(53) and (54).
ity between the particles and the mixture, can be calculate ) . s .
. ) : . : If, as in the cases considered in this paper, the flow im-
by simply evaluating the hindrance function for rotation cor-

responding to the local concentration, as in Ed.9): posed is given by

L T u”(x)=U%+ Q%% x+E°.x, (A5)
(Q)P= 5 VX (U= Q) ——, (138 then,
8mua 0 0 0
U*(a)=U"+ QX x*+E"- X, A6
where(Q)? is the average particle angular velocity,,) is (@) X X (A6)
the mixture volumetric flux{)(¢) is the hindrance function Q% (a)=00, (A7)
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