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Analysis of statistical quantities in simulation of fluidized beds

Kengo Ichiki* and Hisao Hayakawa†

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-01, Japan
~Received 28 April 1997; revised manuscript received 29 August 1997!

Systematic simulations are carried out based on the model of fluidized beds proposed by the present authors
@Phys. Rev. E52, 658 ~1995!#. In our simulation of monolayer particles, the transition of fluidization is a
continuous transition. Two types of fluidized phases, the channeling phase and the bubbling phase, are ob-
served. Our simulation suggests that the flow rate plays the role of the effective temperature and the process
generating free volume is important for time-averaged statistical quantities. The flow-rate dependence of the
diffusion constant suggests the existence of a kind of fluctuation-dissipation relation.
@S1063-651X~98!08902-8#
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I. INTRODUCTION

Recently, granular materials have been studied ex
sively from both experimental and theoretical points of vie
in the context of the nonequilibrium statistical physics@1–3#.
Since the granular materials are dissipative, energy inject
are necessary to preserve steady states. Many of the re
studies for granular materials focus on the behavior of s
tems excited by mechanical activations such as vibration
rotation of vessels. On the other hand, the research on fl
ized beds, where systems are excited by the fluid flow, is
as advanced in spite of its variety of dynamical behavi
@4,5#.

Fluidized beds have been widely used in chemical ind
tries nearly a hundred years and have been studied fro
technological point of view. Fluidized beds consist of gran
lar particles confined in a tall chamber, where fluid is
jected from a distributor at the bottom. In experiments,
ergy injection to the system is controlled by the flow rate
the fluid. For a slow flow rate, the system is in the fix
phase where particles rest on the bottom. When the flow
exceeds the critical value, particles start moving. Con
quently, the system is in the fluidized phase, which conta
some phases, for instance, the homogeneous phase, the
bling phase, and the channeling phase.

There are many models to describe fluidized beds, wh
can be classified into two categories: two-fluid models a
particle-dynamics models. In the two-fluid models, partic
are treated as a fluid@5–10#. These models have the bene
of analytical treatments and generalization of their discuss
to other systems@11#. However, their basis, such as cons
tution equations for the particle-phase pressure and the s
tensor, has not been established. On the other hand
particle-dynamics models describe the direct motion of p
ticles. There are various models such as the distinct elem
method@12–14#. These models, however, cannot be the ba
for the two-fluid models. One of their main problems is th
hydrodynamic interactions among particles are oversim
fied. For instance, the boundary condition between the
ticles and fluid is not satisfied on the scale of particles.

*Electronic address: ichiki@phys.h.kyoto-u.ac.jp
†Electronic address: hisao@phys.h.kyoto-u.ac.jp
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Recently, the present authors proposed a numerical mod
fluidized beds, where hydrodynamic interaction among p
ticles is calculated with reliable accuracy@15,16#. In this pa-
per we present the results of our systematic simulation
monolayer particles in a fluidized bed and discuss the beh
iors of statistical quantities obtained from the simulations
The content of this paper is as follows. In Sec. II we revie
the method of our simulation. We show the results in S
III, where we observe the transition of fluidization and t
existence of two fluidized phases. In Sec. IV we discuss
interpretations of statistical quantities observed in our sim
lation such as the bed height and the diffusion constant
Sec. V we summarize our results. In the Appendix we d
cuss the difficulty of the introduction of particle inertia.

II. SIMULATION METHOD

In this section we briefly explain our model and how
simulate the dynamics of granular particles in fluid flows.
detailed explanation of our model is given in Refs.@15,16#.
For simplicity, we only consider the cases of monodisper
spherical particles. We also neglect the rotational motion
particles. We define the model by the equation of motion
particles

St
dU

dt
52U1V1Fc , ~2.1!

where the boldface letters without superscripts represent
tors in 3N dimensions in theN-particle system. For example
the velocity of particlesU in Eq. ~2.1! has the components

U5F U~1!

U~2!

]

U~N!

G , ~2.2!

where the boldface letters with superscripts represent vec
in three dimensions.Fc in Eq. ~2.1! represents hard-cor
elastic collision among particles and is calculated by the m
1990 © 1998 The American Physical Society
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57 1991ANALYSIS OF STATISTICAL QUANTITIES IN . . .
mentum exchange for contacting particles. St in Eq.~2.1! is
the relaxation time ofU to the terminal velocityV deter-
mined by

V2u`52RJ21
•Ez , ~2.3!

whereu` is the flow rate of induced fluid, which is equal t
the superficial velocity conventionally used for the fluidiz
beds, and2Ez is the unit vector directed by gravity.RJ is the
resistance matrix representing the hydrodynamic interac
among particles calculated by the method of the Stoke
dynamics@17# with periodic boundary condition@18,19,15#.
We also introduce some fixed particles to express the ef
of the bottom of the chamber. In this paper we use dim
sionless quantities with the aid of the particle radiusa and
the sedimentation velocity of a single particle in a visco
fluid U05m g̃/6pma, wherem is the viscosity of the fluid,
m is the mass of particles, andg̃5g(rp2r f)/rp with the
gravitational accelerationg and the densities of the particl
rp and the fluidr f . Notice that our relaxation model~2.1! is
not derived from basic equations because a naive exten
of Stokesian dynamics fails to describe collisions among p
ticles ~Appendix!.

In our simulation, instead of integrating Eq.~2.1!, we in-
tegrate the ordinary differential equation

St
du

dt
5expS 1

t

StDV, ~2.4!

where u5Uexp(t/St), by the fourth-order Runge-Kutt
scheme with fixed time stepDt50.1. In each Runge-Kutta
loop, we construct the resistance matrixRJ from the positions,
calculate the terminal velocityV, and then obtain new posi
tions and velocities of particles. After each stepDt, we pick
up the overlapping particles and make them collide by
momentum exchange. To avoid the divergence in the lu
cation function for overlapping particles when we calcula
RJ , we introduce minimum separationr c510217. We record
positions and velocities of particles every ten steps and
culate the statistical quantities, which will be discussed la

Equation~2.1! contains two control parametersu` and St.
For the parameters related to the system size, we choos
number of mobile particlesNM5256, the number of fixed
particlesNF510, and the size of the unit cell in period
boundary conditions (Lx ,Ly ,Lz)5(34,2,100). In this situa-
tion, particles are confined in a vertical monolayer, wh
hydrodynamic interactions are considered in thr
dimensional space. We adopt the fixed phase as an in
condition of our simulations, which is constructed fro
simulations withu`50. The choice of the system size an
these situations come from the limitation of our compu
resources. We have checked that statistical quantities se
to be insensitive to the choice ofLz within the range of 50
<Lz<100 and the choice of the initial conditions is not re
evant from the comparison of results with other initial co
ditions. We have also confirmed that qualitatively simi
behaviors are observed in three-dimensional simulations
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III. SIMULATION RESULTS

In this section we present the results of our simulations
detail. We perform simulations at the points plotted in Fig
in parameter space within the range of 0.05<u`<0.8 and
0.1<St<100.

In the fixed phase at a slow flow rate, particles are at r
at the bottom. When the flow rateu` exceeds the critica
flow rateuc , the particles begin to be fluidized. The trans
tion between the fixed phase and the fluidized phase seem
be independent of St. We observe two fluidized phases.
is the channeling phaseobserved for small St, where we ca
see a channel or a path of fluid flow. Another isthe bubbling
phaseobserved for large St, where bubbles rise through
particle beds. Their typical time evolution is shown in Figs
and 3. We show the area of channel-bubble transition
served in our simulations as the transition area in Fig. 1.

To characterize the transition of fluidization quantit
tively, we calculate the kinetic energy per particleE(t) de-
fined by

E~ t !5
1

NM
(
a51

NM

@Ua~ t !#2. ~3.1!

FIG. 1. Plots of points in the parameter space (u`,St) where we
perform a simulation withNM5256, NF510, and (Lx ,Ly ,Lz)
5(34,2,100). Also shown are the observed phases: fixed ph
(d), channeling phase (h), bubbling phase (s), and transition
phase (n). We also show the transition line of fluidizationuc with
the solid line and the area of the channel-bubble transition with
dotted line, which are discussed in the text.

FIG. 2. Typical time evolution of the pattern in the channeli
phase at St50.5 andu`50.15. The time proceeds from left to righ
with an interval of 20 dimensionless units of time.
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1992 57KENGO ICHIKI AND HISAO HAYAKAWA
A typical behavior ofE(t) in the bubbling phase is shown i
Fig. 4. We observe a regular behavior after the minim
point following the first peak ofE(t). In the channeling
phase, we also observe the qualitatively similar behavio
E(t) to Fig. 4, where the period and amplitude of oscillati
become smaller. We now introduce the average ofE(t) de-
fined by

Ē5
1

DTEDT
dt E~ t !, ~3.2!

whereDT is the period of the regular behavior inE(t). From
Fig. 5 we observe a continuous transition atu`5uc , where
the data can be well fitted by

Ē~u`!5H 0 ~u`,uc!

AE~u`2uc! ~u`.uc!.
~3.3!

The fitting parametersAE and uc depend on St. Equation
~3.3! definesuc shown in Fig. 1.

Our results suggest thatuc is independent of St and
Ē(u`) is a linear function ofu` for any St. It is useful to
remember that our model is Galilean invariant, that is,
system with fixed particles ofUF50 under the flow rateu`

is equivalent to that with fixed particles ofUF52u`Ez un-

FIG. 3. Typical time evolution of the pattern in the bubblin
phase at St510.0 andu`50.15. The time proceeds from left t
right with an interval of 20 dimensionless units of time.

FIG. 4. Typical temporal behavior ofE(t) in the fluidized
phase. The parameters used here are St520 andu`50.3. The os-
cillation corresponds to the generation of bubbles.
f

e

der the flow rate 0. Let us consider how the system is flu
ized under the latter situation. First we defineU fall , which is
the falling velocity of the mobile particles in the fixed pha
without the support of fixed particles in the frame ofu`50.
If the flow rateu` is slower thanU fall , the mobile particles
are supported by the fixed particles moving downward w
u`. Therefore, the system is not fluidized. While the flo
rateu` is faster thanU fall , the mobile particles separate from
the fixed particles and then the gap between them is ge
ated. The gap may grow into a bubble and propagate upw
through the particles or it may construct a channel. Thus
system is fluidized. Our picture means that the critical flo
rateuc is determined by the falling velocityU fall , which is
independent of St, becauseU fall is evaluated by the configu
ration of particles in a fixed phase as the sedimentation
of suspensions@20# and the configuration is the same for an
St. We numerically evaluateU fall50.106 as the average ofV
in Eq. ~2.3! for the configuration of fixed phase, which
nearly identical touc .

The consideration of the Galilean invariant properties a
gives us some insight into the linearity ofĒ with u`. In the
coordinate withUF52u`Ez , it is obvious that the gain of
particle energy per unit time from the gravitational potent
is proportional tou` because the center of mass also fa
with the velocityu`.

Next we discuss the channel-bubble transition. In view
Figs. 2 and 3, it is hard to distinguish the channeling ph
from the bubbling phase. At first, we show the varianceVH
defined by

VH5
1

DTEDT
dt@H~ t !2H̄#2, ~3.4!

whereH and H̄ are the height of the center of mass and
average defined by

H~ t !5
1

NM
(
a51

NM

za~ t ! ~3.5!

and

FIG. 5. Flow-rate dependence of the averaged energyĒ(u`) at
St510. Error bars are their standard deviation. We can see

transition of fluidization atu`5uc and the linear behavior ofĒ for
the flow rateu` in the fluidized phase (u`.uc).
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H̄5
1

DTEDT
dt H~ t !. ~3.6!

We expect thatVH is small in the channeling phase and lar
in the bubbling phase. Figure 6 shows the correspond
behavior foru`50.3 and the transition is observed around
55. For other cases, the channel-bubble transitions are
served in the area shown in Fig. 1.

We also observe some qualitative changes in the sta
cal quantities corresponding to the channel-bubble tra
tions. Figure 7 showsĒ(St) for u`50.15 and 0.3 scaled b
the value at St510 for each case. From this figure we s
that Ē increases with St in the channeling phase andĒ de-
creases with St in the bubbling phase. The behavior in
channeling phase can be understood for the following rea
At St50, we observe a steady channel and no relative mo
among particles. When St increases, the particles on
channel can be fluidized. This means that St is the relaxa
time of the particle velocityU to their terminal velocityV,
which is determined under the case of St50, and the nonre-
laxed particles cause the collapse of the channel. There
Ē(St) increases with St in the channeling phase. On the o
hand, we observe thatĒ decreases with St in the bubblin

FIG. 7. St dependence of the averaged energyĒ scaled by

Ē(St510) for u`50.15 (h) and 0.3 (s). For each case we ca
observe a peak around the channel-bubble transition.

FIG. 6. St dependence of the varianceVH at u`50.3. We can
see the transition around St55. At the channeling phase the var
ance is small, while at the bubbling phase the variance beco
large.
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phase. This may be understood as follows. From Figs. 6
7 in the previous paper@15# or in Fig. 4 herein, we have see
that the kinetic energy is generated by bubbles with conv
tive motion of particles. This is because the local differen
of the volume fraction of particles causes the relative mot
of particles through hydrodynamic interaction. As St i
creases, trajectories of particles become ballistic and the
ference of volume fraction tends to be leveled, since St r
resents particle inertia. Thus the convective motion cau
by bubbles becomes small when St becomes large. In
we see a clear bubble and the definite convective motion
particles for St510 ~Fig. 8!, while we see a relatively ob
scure bubble and the weaker convection for St5100 ~Fig. 9!.
Therefore,Ē(St) in the bubbling phase decreases with
Taking into account the increase ofĒ(St) in the channeling
phase as a function of St,Ē(St) has a peak around the tra
sition point.

IV. DISCUSSION

In this section we present two characteristic results of
simulation, which are the height of the center of massH̄(St)
and the diffusion constantD(u`), and then discuss the rela
tion between them. Figure 10 showsH̄(St) for u`50.15,
0.2, 0.3, and 0.5. We see the qualitative change in the t
sition area in Fig. 1. The clear logarithmical increase ofH̄ in

es

FIG. 8. Convective motion of particles in the bubble atu`

50.3 and St510. Here two periodic images are shown. We c
observe the sharp edge of the bubble and the definite convect
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1994 57KENGO ICHIKI AND HISAO HAYAKAWA
the bubbling phase is remarkable. We fit the data in Fig.
by

H̄~St!5CHln~St!1DH , ~4.1!

where the fitting parametersCH and DH depend onu`.
Equation~4.1! can be rewritten as

FIG. 9. Convective motion of particles in the bubble atu`

50.3 and St5100. Here two periodic images are shown. Compa
to Fig. 7, we can observe a broader edge of the bubble and we
convection, where the scale of the velocities are the same.

FIG. 10. St dependence ofH̄ at u`50.15 (s), 0.2 (h), 0.3
(d), and 0.5 (n). The fittings by Eq.~4.1! are also shown.
0

St5expS H̄2DH

CH
D . ~4.2!

HereH̄2DH can be understood as the volume expansionDV
sinceDH is the height at St51. We show theu` dependence
of CH in Fig. 11. From this figure,CH may be proportional
to u`2uc . Since St is the characteristic timet of the sys-
tem, we may rewrite Eq.~4.2! as

t}expS F
DV

u`2uc
D , ~4.3!

whereF is a constant. Equation~4.3! suggests that the acti
vation process exists, wheret is the time to generate th
volume expansionDV. The importance of an activation pro
cess similar to the hole theory for simple liquids@21,22# has
been indicated in the compaction process of vibrating b
@23–25#. For dense particle system, it is natural that the v
cosity is proportional to the timet needed to generate
certain free volume. Therefore, we expect that the effec
viscosityme may be written as

me~u`!}e«8/~u`2uc!, ~4.4!

where «8 is a constant. Equation~4.4! is similar to the
Vogel-Fulcher law@26,27# in glass-forming liquids. In the
experiment of fluidized beds@28#, the shear viscosity mea
sured by the modified Stormer viscometer also obeys sim
behavior, although it is proposed simply as the Arrhen
function exp(«8/u`) rather than Eq.~4.4!. The result of
Ē(u`) in Fig. 5 suggests that the flow rateu` behaves as the
effective temperature of the environment as that of the h
bath in equilibrium systems. Therefore, the critical flow ra
uc may correspond to the glass transition temperature.

In Fig. 12 we showD(u`) in the simulation calculated by

D5
1

2

1

NM
(
a51

NM

uŨa~v50!u2, ~4.5!

whereŨa(v) is the Fourier transform ofUa(t). We see that
D50 for u`,uc and it increases monotonical foru`.uc .
We also try to fit the data by

d
ker

FIG. 11. u` dependence of the fitting parameterCH . The solid
line shows the fitting byCH}u`2uc .
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D~u`!}u`e2«/~u`2uc!, ~4.6!

where« is a fitting parameter. From Fig. 12, Eq.~4.6! is a
good fitting function of the simulation results.

Let us discuss the relation betweenH̄(St) andD(u`).
Equations~4.4! and ~4.6! suggest that the diffusion consta
D may be related to the viscosityme as

D}
u`

me
. ~4.7!

Equation ~4.7! suggests that the Einstein relation or t
fluctuation-dissipation relation in fluidized beds may ex
with the replacement of temperature by the effective te
peratureu`. This statement is interesting because the sys
is in a highly nonequilibrium state and there is no reason
the existence of the fluctuation-dissipation relation in
sense of linear nonequilibrium statistical mechanics.

Before closing this section, we make the following r
marks. Although the transition of fluidization in some expe
ments seems to be a discontinuous phase transition@29,30#,
our simulations suggest a continuous phase transition.
remove such a contradiction, we indicate that a recent exp
ment@31# shows that the continuous transitions are obser
in the system with small particles, conventionally calledA
particles of Geldart’s classification@32#, where the Stokes
approximation and our model would be justified. It is also
open problem that at present we cannot reproduce ahomo-
geneous phasein our simulation. The reason for the lack o
the phase might be the lack of the contact force among
ticles @30#.

V. CONCLUSIONS

In this paper we have carried out systematic simulati
of a fluidized bed with the change of two control paramet
u` and St. When the flow rateu` is small, particles are a
rest. Above the critical flow rateuc , particles are fluidized
The critical valueuc is independent of St. We have observ
two fluidized phases,the channeling phaseand the bubbling
phase, where the former changes to the latter as St increa
We have found that the flow rateu` plays the role of the
effective temperature. The height of the center of m

FIG. 12. Flow-rate dependence of the diffusion constantD at St
510.0. The fitting by Eq.~4.6! with «50.11360.017 is also shown
as the solid line.
t
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H̄(St) in the bubbling phase increase logarithmically with S
which suggests that the effective viscosity obeys the Vog
Fulcher law~4.4!. The diffusion constantD(u`) is well fitted
by Eq. ~4.6! and this suggests the existence of some kind
fluctuation-dissipation relation in fluidized beds.
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APPENDIX: THE INERTIAL EFFECT OF PARTICLES

Here we discuss the difficulties of the introduction of pa
ticle inertia into the Stokes approximation. Let us consid
directly the equation of motion of particles with only thre
mechanisms: the inertial effect of the particles, the hydro
namic interaction through the fluid under the Stokes appro
mation, and the gravitational force. Then the equation
motion can be written as

St0
dU

dt
52RJ•~U2u`!2Ez , ~A1!

where St0 is the bare Stokes number defined by

St05
mU0

6pma2 . ~A2!

Multiplying RJ21 to Eq. ~A1! from the left-hand side, we ge

St0RJ21
•

d

dt
U52U1V, ~A3!

whereV is defined by Eq.~2.3!. From the simulation of Eq.
~A3!, we observe no collision between particles even in
case with large St0. Particles form a cluster and relative mo
tion among them almost disappears. This situation may
understood by the model

St0
dU

dt
52

1

2~r 22a!
U. ~A4!

Here we extract the radial component of the motion betw
two particles.r denotes the separation between the center
the pair andU denotes the relative velocity. The resistan
1/2(r 22a) reflects the lubrication effect, which diverges
contact (r→2a). In this case, we need initially the infinit
energy to approach the contact point (r 52a) even in the
case of large St0. Thus the model~A4! cannot contain any
collision.
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1996 57KENGO ICHIKI AND HISAO HAYAKAWA
Our model~2.1! may be understood as the renormaliz
tion of the singularity in the lubrication because we get E
~2.1! by multiplying the singularityRJ by the inertial term of
Eq. ~A3!. ~Here we note thatRJ is dimensionless because it
scaled by 6pma.! Our model behaves reasonably like re
fluidized beds where collisions occur so frequently. We c
imagine several possible mechanisms preventing the si
larity. For example, if there are some dimples on the surf
of the particles, they collide before the mean surfaces co
in contact. From another point of view we can also say t
the continuous description of the fluid in the gap between
particles breaks down when particles approach each o
y

.

D.
-
.

l
n
u-
e
e
t
e
er

and the gap becomes comparable to the mean free path o
molecules of the fluid@33#.

Recently, a model in this context has been presented@34#.
To remove the singularity, they introduce a cutoff leng
which may correspond to the height of the dimples on
surface or the mean free path of the fluid molecules. Th
simulation shows that the results are characterized b
scaled Stokes number that strongly depends on the cu
length rather than the bare Stokes number. We need to s
the renormalization procedure on the particle inertia probl
in the Stokes approximation, which we accepta priori in Eq.
~2.1!.
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