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Analysis of statistical quantities in simulation of fluidized beds
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Systematic simulations are carried out based on the model of fluidized beds proposed by the present authors
[Phys. Rev. B52, 658 (1995]. In our simulation of monolayer particles, the transition of fluidization is a
continuous transition. Two types of fluidized phases, the channeling phase and the bubbling phase, are ob-
served. Our simulation suggests that the flow rate plays the role of the effective temperature and the process
generating free volume is important for time-averaged statistical quantities. The flow-rate dependence of the
diffusion constant suggests the existence of a kind of fluctuation-dissipation relation.
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[. INTRODUCTION Recently, the present authors proposed a numerical model of
i i fluidized beds, where hydrodynamic interaction among par-
Recently, granular materials have been studied extenicles is calculated with reliable accura5s,16]. In this pa-
sively from both experimental and theoretical points of viewper we present the results of our systematic simulation for

in the context of the nonequilibrium statistical physits-3]. ~ monolayer particles in a fluidized bed and discuss the behav-
Since the granular materials are dissipative, energy injection'.?rs of statistical quantities obtained from the simulations.

e content of this paper is as follows. In Sec. Il we review
are necessary to preserve steady states. Many of the recqfb” method of our simulation. We show the results in Sec.

studies for granular materials focus on the behavior of sysH|, where we observe the transition of fluidization and the
tems excited by mechanical activations such as vibration oexistence of two fluidized phases. In Sec. IV we discuss the

rotation of vessels. On the other hand, the research on fluidnterpretations of statistical quantities observed in our simu-
ized beds, where systems are excited by the fluid flow, is ng@tion such as the bed height and the diffusion constant. In
. 4 . . . . ec. V we summarize our results. In the Appendix we dis-

E\jsz];\dvanced in spite of its variety of dynamical behaviorg,,sg the difficulty of the introduction of particle inertia.
Fluidized beds have been widely used in chemical indus-

tries nearly a hundred years and have been studied from a II. SIMULATION METHOD

technological point of view. Fluidized beds consist of granu-

lar particles confined in a tall chamber, where fluid is in-

jected from a distributor at the bottom. In experiments, en

ergy injection to the system is controlled by the flow rate ofdeta”.ed gx_planation of our model Is given in Re[f’s5,llﬂ.
the fluid. For a slow flow rate, the system is in the fixed For simplicity, we only consider the cases of monodispersed

phase where particles rest on the bottom. When the flow rat%'oh‘_ariCaI particle_s. We also neglect the rotz_;ltional mo_tion of
exceeds the critical value, particles start moving. Consepartlcles. We define the model by the equation of motion for

quently, the system is in the fluidized phase, which contain§’alrtiCIes
some phases, for instance, the homogeneous phase, the bub-
bling phase, and the channeling phase.

In this section we briefly explain our model and how to
simulate the dynamics of granular particles in fluid flows. A

There are many models to describe fluidized beds, which Std_U =—U+V+F,, (2.0
can be classified into two categories: two-fluid models and dt

particle-dynamics models. In the two-fluid models, particles

are treated as a fluib—10]. These models have the benefit ] ]

of analytical treatments and generalization of their discussio¥/here the boldface letters without superscripts represent vec-
to other system§l1]. However, their basis, such as consti- tors in 3N dimensions in thé-particle system. For example,
tution equations for the particle-phase pressure and the streite velocity of particles) in Eq. (2.1) has the components
tensor, has not been established. On the other hand, the

particle-dynamics models describe the direct motion of par-

ticles. There are various models such as the distinct element u®

method[12—-14. These models, however, cannot be the basis u®

for the two-fluid models. One of their main problems is that u=| . |, (2.2
hydrodynamic interactions among particles are oversimpli- :

fied. For instance, the boundary condition between the par- utnv

ticles and fluid is not satisfied on the scale of particles.
where the boldface letters with superscripts represent vectors
*Electronic address: ichiki@phys.h.kyoto-u.ac.jp in three dimensionsF. in Eq. (2.1) represents hard-core
TElectronic address: hisao@phys.h.kyoto-u.ac.jp elastic collision among particles and is calculated by the mo-
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mentum exchange for contacting particles. St in 1) is 100 |
the relaxation time ol to the terminal velocityV deter-
mined by

10
V-u“=-R1.E,, (2.3 -
!

whereu” is the flow rate of induced fluid, which is equal to
the superficial velocity conventionally used for the fluidized

beds, and- E, is the unit vector directed by graviti is the
resistance matrix representing the hydrodynamic interaction 01} , , , ,
among particles calculated by the method of the Stokesian 0 02 04 _ 06 08 1
dynamics[17] with periodic boundary conditiofl8,19,15. u

We also introduce some fixed particles to express the effect FIG. 1. Plots of points in the parameter spac&,St) where we

of the bottom of the chamber. In this paper we use dimenperform a simulation withNy =256, Ne.=10, and (4,Ly,L,)
sionless quantities with the aid of the particle radiuand ~ =(34.,2,100). Also shown are the observed phases: fixed phase
the sedimentation velocity of a single particle in a viscous(®). channeling phaseL{), bubbling phase ©), and transition

. o~ . . . . phase (\). We also show the transition line of fluidizatien with
fluid Uo=mg/6mua, wherep is the viscosity of the fluid, the solid line and the area of the channel-bubble transition with the

m is the mass of particles, a@:g(pp_pf)/pp with the  dotted line, which are discussed in the text.
gravitational acceleratiog and the densities of the particle

pp and the fluidp; . Notice that our relaxation modé2.1) is
not derived from basic equations because a naive extension ] ] ] ] )
of Stokesian dynamics fails to describe collisions among par- I this section we present the results of our simulations in

Ill. SIMULATION RESULTS

ticles (Appendix. detail. We perform simulations at the points plotted in Fig. 1
In our simulation, instead of integrating E@.1), we in- N p;araLneter space within the range of G:05'<0.8 and
tegrate the ordinary differential equation 0.1=St<100.

In the fixed phase at a slow flow rate, particles are at rest
at the bottom. When the flow rat¢” exceeds the critical

du t flow rateu., the particles begin to be fluidized. The transi-
Sta =exp + St Vv, (2.4 tion between the fixed phase and the fluidized phase seems to

be independent of St. We observe two fluidized phases. One
is the channeling phasebserved for small St, where we can
where u=Uexp/St), by the fourth-order Runge-Kutta S€€ & channel or a path of fluid flow. Anothethe bubbling
scheme with fixed time stept=0.1. In each Runge-Kutta Phaseobserved for large St, where bubbles rise through the

loop, we construct the resistance matkrom the positions particle beds. Their typical time evolution is shown inlllzigs. 2
calculate the terminal velocity, and then obtain new posi- and 3. We show the area of channel-bubble transition ob-

tions and velocities of particles. After each step we pick served in our simulations as the transition area in Fig. 1.

X Pe ) ep To characterize the transition of fluidization quantita-
up the overlapping particles a_nd mak_e them co_lhde by th.efively we calculate the kinetic energy per parti&ét) de-
momentum exchange. To avoid the divergence in the lubri;. '

cation function for overlapping particles when we calculateflned by

R, we introduce minimum separation=10"1". We record N
positions and velocities of particles every ten steps and cal- EO={" Z [Us(t)]% 3.
culate the statistical quantities, which will be discussed later. M et
Equation(2.1) contains two control parameteu$ and St.
For the parameters related to the system size, we choose tr
number of mobile particle®N,,=256, the number of fixed
particlesNg=10, and the size of the unit cell in periodic
boundary conditionsl(y,L,,L,)=(34,2,100). In this situa-
tion, particles are confined in a vertical monolayer, while
hydrodynamic interactions are considered in three-
dimensional space. We adopt the fixed phase as an initia
condition of our simulations, which is constructed from
simulations withu”=0. The choice of the system size and
these situations come from the limitation of our computer
resources. We have checked that statistical quantities seen
to be insensitive to the choice &f, within the range of 50
<L ,<100 and the choice of the initial conditions is not rel- : . &
evant from the comparison of results with other initial con-  FIG. 2. Typical time evolution of the pattern in the channeling
ditions. We have also confirmed that qualitatively similarphase at $t0.5 andu”=0.15. The time proceeds from left to right
behaviors are observed in three-dimensional simulations. with an interval of 20 dimensionless units of time.
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FIG. 3. Typical time evolution of the pattern in the bubbling
phase at S£10.0 andu®=0.15. The time proceeds from left to
right with an interval of 20 dimensionless units of time.

A typical behavior ofE(t) in the bubbling phase is shown in
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FIG. 5. Flow-rate dependence of the averaged engifgy’) at
St=10. Error bars are their standard deviation. We can see the
transition of fluidization ati”=u. and the linear behavior d& for
the flow rateu™ in the fluidized phaseu*>u.).
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Fig. 4. We observe a regular behavior after the minimurder the flow rate 0. Let us consider how the system is fluid-

point following the first peak ofE(t). In the channeling

ized under the latter situation. First we defldg,, which is

phase, we also observe the qualitatively similar behavior ofhe falling velocity of the mobile particles in the fixed phase
E(t) to Fig. 4, where the period and amplitude of oscillationwithout the support of fixed particles in the frameusf=0.

become smaller. We now introduce the averag& (@) de-
fined by

E= AT ATdt E(1),

(3.2
whereATis the period of the regular behaviork{(t). From
Fig. 5 we observe a continuous transitionudt=u., where
the data can be well fitted by

(U™<ug)

(u™>ug). 33

) [ 0

E(u™)= -

S VTR

The fitting parameterg\z and u. depend on St. Equation
(3.3 definesu. shown in Fig. 1.

Our results suggest thai. is independent of St and
E(u”™) is a linear function ofu” for any St. It is useful to

If the flow rateu” is slower thanUs,,, the mobile particles
are supported by the fixed particles moving downward with
u”. Therefore, the system is not fluidized. While the flow
rateu” is faster tharUs,; , the mobile particles separate from
the fixed particles and then the gap between them is gener-
ated. The gap may grow into a bubble and propagate upward
through the particles or it may construct a channel. Thus the
system is fluidized. Our picture means that the critical flow
rate u. is determined by the falling velocity,,, which is
independent of St, becaukh, is evaluated by the configu-
ration of particles in a fixed phase as the sedimentation rate
of suspensiong20] and the configuration is the same for any
St. We numerically evaluatd;,;=0.106 as the average Wf
in Eqg. (2.3 for the configuration of fixed phase, which is
nearly identical tau,.

The consideration of the Galilean invariant properties also

gives us some insight into the linearity Bf with u”. In the

remember that our model is Galilean invariant, that is, thecgordinate withUg= —u”E,, it is obvious that the gain of

system with fixed particles dfl=0 under the flow ratei”
is equivalent to that with fixed particles &f-=—u”E, un-
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FIG. 4. Typical temporal behavior oE(t) in the fluidized

phase. The parameters used here are28tandu”=0.3. The os-

cillation corresponds to the generation of bubbles.
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particle energy per unit time from the gravitational potential
is proportional tou™ because the center of mass also falls
with the velocityu”.

Next we discuss the channel-bubble transition. In view of
Figs. 2 and 3, it is hard to distinguish the channeling phase
from the bubbling phase. At first, we show the variaie
defined by

1 _
vH=A—TLTdt[H(t)—H]2, (3.9

whereH andH are the height of the center of mass and its
average defined by

Nm

HO=5- 2 20

(3.5

and
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FIG. 6. St dependence of the variar¢g at u*=0.3. We can
see the transition around=S5. At the channeling phase the vari-
ance is small, while at the bubbling phase the variance becomes
large.

H_—if dt H(t 3.6

We expect thaV/y is small in the channeling phase and large
in the bubbling phase. Figure 6 shows the corresponding®
behavior foru”=0.3 and the transition is observed around St
=5. For other cases, the channel-bubble transitions are ob -
served in the area shown in Fig. 1.

We also observe some qualitative changes in the statisti-
cal quantities corresponding to the channel-bubble transi-b

tions. Figure 7 show&(St) foru”=0.15 and, 0'_3 scaled by FIG. 8. Convective motion of particles in the bubble wit

the value at St10 for each case. From this figure we see_ 3 and st10. Here two periodic images are shown. We can
that E increases with St in the channeling phase &nde-  observe the sharp edge of the bubble and the definite convection.
creases with St in the bubbling phase. The behavior in the

channeling phase can be understood for the following reasophase. This may be understood as follows. From Figs. 6 and
At St=0, Welobserve a steady channel and no relgtlve motion in the previous papdi5] or in Fig. 4 herein, we have seen
among particles. When St increases, the particles on th@at the kinetic energy is generated by bubbles with convec-
channel can be fluidized. This means that St is the relaxatiofye motion of particles. This is because the local difference
time of the particle velocityJ to their terminal velocityV,  of the volume fraction of particles causes the relative motion
which is determined under the case of-8f and the nonre-  of particles through hydrodynamic interaction. As St in-
laxed particles cause the collapse of the channel. Thereforgreases, trajectories of particles become ballistic and the dif-
E(St) increases with St in the channeling phase. On the othderence of volume fraction tends to be leveled, since St rep-

hand, we observe thd& decreases with St in the bubbling resents particle inertia. Thus the convective motion caused
by bubbles becomes small when St becomes large. In fact,

1.6 1 . , . we see a clear bubble and the definite convective motion of
particles for S&10 (Fig. 8), while we see a relatively ob-
147 i scure bubble and the weaker convection for 820 (Fig. 9).
§ 1.2 % Po. 1 Therefore,E(St) in the bubbling phase decreases with St.
I 1} | ' B o | Taking into account the iicrease B{ St) in the channeling
e 0.8 L | | phase as a function of SE(St) has a peak around the tran-
S o sition point.
< 06 P
e 43 _____ % ...... 4{3 .
Iy 04 @% T IV. DISCUSSION
021 ] In this section we present two characteristic results of our
0 1

0'1 1 1'0 100 simulation, which are the height of the center of me§St)
' St and the diffusion constari? (u®), and then discuss the rela-
FIG. 7. St dependence of the averaged enefggcaled by tion between them. Figure 10 showi(St) for u®=0.15,
E(St=10) for u*=0.15 (J) and 0.3 O). For each case we can 0-2, 0.3, and 0.5. We see the qualitative change in the tran-
observe a peak around the channel-bubble transition. sition area in Fig. 1. The clear logarithmical increaséiah
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FIG. 9. Convective motion of particles in the bubble wt
=0.3 and St100. Here two periodic images are shown. Comparedvation process exists, whereis the time to generate the

to Fig. 7, we can observe a broader edge of the bubble and weakgblume expansior V. The importance of an activation pro-
convection, where the scale of the velocities are the same.
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FIG. 11. u” dependence of the fitting paramey; . The solid
line shows the fitting byCpcu™—ug .

4.2

HereH — Dy can be understood as the volume expandivh
sinceDy is the height at St1. We show thei” dependence
of Cy in Fig. 11. From this figureCy may be proportional
to u”—u,. Since St is the characteristic timeof the sys-
tem, we may rewrite Eq4.2) as

AV

TOCEX[(F ),
u”—ug

whereF is a constant. Equatiof#.3) suggests that the acti-

4.3

o

cess similar to the hole theory for simple liquidl,22 has
been indicated in the compaction process of vibrating beds

the bubbling phase is remarkable. We fit the data in Fig. 1§23—25. For dense particle system, it is natural that the vis-

by

H(St=CuIn(SH+ Dy,

4.1

where the fitting parameter€, and D,; depend onu”.
Equation(4.1) can be rewritten as

35
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FIG. 10. St dependence &f at u”=0.15 (O), 0.2 (O0), 0.3
(@), and 0.5 (). The fittings by Eq(4.1) are also shown.

cosity is proportional to the time needed to generate a
certain free volume. Therefore, we expect that the effective
viscosity we may be written as
Me(ux)oces'/(ux—uc)’ (44)
where ¢’ is a constant. Equatioii4.4) is similar to the
Vogel-Fulcher law[26,27] in glass-forming liquids. In the
experiment of fluidized bedg28], the shear viscosity mea-
sured by the modified Stormer viscometer also obeys similar
behavior, although it is proposed simply as the Arrhenius
function expg’/u®) rather than Eq.(4.4). The result of

E(u”) in Fig. 5 suggests that the flow rai& behaves as the
effective temperature of the environment as that of the heat
bath in equilibrium systems. Therefore, the critical flow rate
u. may correspond to the glass transition temperature.

In Fig. 12 we showD (u®) in the simulation calculated by

11Q ,
21 1U%(w=0)?,

D= Emaf (45)

whereU%(w) is the Fourier transform df/*(t). We see that
D=0 for u”<u, and it increases monotonical faf*>u,.
We also try to fit the data by
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& H_(_St in the bubblin(% Phase increase logarithmically with St,
which suggests that the effective viscosity obeys the Vogel-

4l Fulcher law(4.4). The diffusion constard (u”) is well fitted
by Eqg.(4.6) and this suggests the existence of some kind of
fluctuation-dissipation relation in fluidized beds.
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APPENDIX: THE INERTIAL EFFECT OF PARTICLES
wheres is a fitting parameter. From Fig. 12, EG.6) is a Here we discuss the difficulties of the introduction of par-
good fitting function of the simulation results. ticle inertia into the Stokes approximation. Let us consider
Let us discuss the relation betweéf(St) andD(u”).  directly the equation of motion of particles with only three
Equations(4.4) and (4.6) suggest that the diffusion constant mechanisms: the inertial effect of the particles, the hydrody-

D may be related to the viscosiy, as namic interaction through the fluid under the Stokes approxi-
_ mation, and the gravitational force. Then the equation of
D U__ @7 motion can be written as
Me
d o
Equation (4.7) suggests that the Einstein relation or the S‘bm:—R'(U—Um)—Ez, (A1)

fluctuation-dissipation relation in fluidized beds may exist

with the replacement of temperature by the effective tem- . )
peratureu”. This statement is interesting because the systet’N€re S is the bare Stokes number defined by
is in a highly nonequilibrium state and there is no reason for

the existence of the fluctuation-dissipation relation in the St— mUg

sense of linear nonequilibrium statistical mechanics. Ib_677,45;12'

Before closing this section, we make the following re-
marks. Although the transition of fluidization in some experi-
ments seems to be a discontinuous phase trangizi#y30,
our simulations suggest a continuous phase transition. To
remove such a contradiction, we indicate that a recent experi- Sroﬁfl'
ment[31] shows that the continuous transitions are observed
in the system with small particles, conventionally called
particles of Geldart’s classificatiof82], where the Stokes whereV is defined by Eq(2.3. From the simulation of Eq.
approximation and our model would be justified. It is also an(A3), we observe no collision between particles even in the
open problem that at present we cannot reproduberao-  case with large $t Particles form a cluster and relative mo-

geneous phasi our simulation. The reason for the lack of tion among them almost disappears. This situation may be
the phase might be the lack of the contact force among paginderstood by the model

ticles[30].

(A2)
Multiplying R~ to Eq. (A1) from the left-hand side, we get

U=-U+V, (A3)

Sle

du 1
V. CONCLUSIONS Sba =— mU. (A4)

In this paper we have carried out systematic simulations
of a fluidized bed with the change of two control parameterdHere we extract the radial component of the motion between
u” and St. When the flow rate” is small, particles are at two particlesr denotes the separation between the centers of
rest. Above the critical flow rata., particles are fluidized. the pair andJ denotes the relative velocity. The resistance
The critical valueu, is independent of St. We have observed1/2(r — 2a) reflects the lubrication effect, which diverges at
two fluidized phaseghe channeling phasendthe bubbling contact ¢ —2a). In this case, we need initially the infinite
phase where the former changes to the latter as St increasesnergy to approach the contact poimt=2a) even in the
We have found that the flow ratg” plays the role of the case of large St Thus the mode(A4) cannot contain any
effective temperature. The height of the center of maseollision.
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Our model(2.1) may be understood as the renormaliza-and the gap becomes comparable to the mean free path of the
tion of the singularity in the lubrication because we get Eq.molecules of the fluid33].
(2.1) by multiplying the singularityR by the inertial term of Recently, a model in this context has been presef&éf
Eq. (A3). (Here we note thai is dimensionless because itis 10 remove the singularity, they introduce a cutoff length,
scaled by 6rua.) Our model behaves reasonably like real Which may correspond to the height of the dimples on the
fluidized beds where collisions occur so frequently. We carsurface or the mean free path of the fluid molecules. Their
imagine several possible mechanisms preventing the singgimulation shows that the results are characterized by a
larity. For example, if there are some dimples on the surfacécaled Stokes number that strongly depends on the cutoff
of the particles, they collide before the mean surfaces comtength rather than the bare Stokes number. We need to show
in contact. From another point of view we can also say thathe renormalization procedure on the particle inertia problem

the continuous description of the fluid in the gap between thén the Stokes approximation, which we acceaggriori in Eq.
particles breaks down when particles approach each othé2.l).
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