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V.21.7 TRANSPORT PROPERTIES

Kengo Ichiki The Johns Hopkins University, Baltimore, Maryland

To evalute numerically the transport properties such as diffusion coefficient
and shear viscosity for dispersed systems, we have two ways – direct and
indirect simulations. In the former way, we simulate the experimental situa-
tion on the computer and measure the quantity directly, while in the latter
way, we calculate time-correlation functions in the equilibrium state and
interpret them into the transport properties by the Green-Kubo formula,
which is widely used for simple liquids [1]. The main difference between
simple liquids and dispersed systems such as colloidal suspensions is the ex-
istance of hydrodynamic interaction by the fluid surrounding the particles
[2]. Here we focus on the contribution of the hydrodynamic interaction[3].
Other contributions such as interparticle forces and Brownian motion are
briefly commented later.

Diffusion Coefficients

The self-diffusion coefficient is defined by the mean-square displacement of a
tracer particle as

Ds =
1

6

d〈|x(t) − x(0)|2〉

dt
, (1)

where x(t) is the position of the tracer particle at time t. The bracket 〈〉
denotes the average on many time sequences. It has two asymptotes: short-
and long-time diffusion coefficients. The splitting timescale is a2/D0 where
a is the particle radius and D0 is the Stokes-Einstein diffusion coefficient of
a single isolated particle in the fluid defined by

D0 =
kBT

6πηa
. (2)

Here kB is the Boltzmann constant, T is the temperature, and η is the vis-
cosity of the fluid. The long-time self-diffusion coefficient is also written
as

Ds

∞
= lim

t→∞

〈|x(t) − x(0)|2〉

6t
=

1

3

∫

∞

0

dt 〈U (0) · U (t)〉, (3)

where U is the velocity of the tracer particle. The last form with the time-
correlation function of the velocity is called Green-Kubo formula. By (1) or
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(3), the self-diffusion coefficients are calculated from many series of dynamical
simulations: This is the indirect way.

Figure 1: Short-time self-diffusion coefficients obtained by Stokesian Dy-
namics methods (solid symbols), a theoretical calculation (solid line), and
experimental results (open symbols). (From Ref. 3.)

The direct way for diffusion coefficients is to calculate the mobility of
the tracer particle. The factor 1/6πηa in (2) is the mobility of the single
isolated particle. For dispersed systems, on the other hand, the mobility is
not just 1/6πηa because of the hydrodynamic interaction among particles.
Under the Stokes approximation, the hydrodynamic interaction is expressed
by the resistance equation

(

F

S

)

=

(

RFU RFE

RSU RSE

)

·

(

U − u
∞

−E∞

)

, (4)

where F is the force and torque vector with 6N components, S is the stresslet,
U −u

∞ is the translational and rotational velocities relative to the imposed
flow, and E∞ is the strain imposed to the system, for N particles in the
system. The whole resistance matrix with 11N ×11N elements depends only
on the configuration of the particles and is calculated by Stokesian Dynamics
method [4]. From (4), the particle velocity U under no external flow is given
by

U = R
−1

FU
· F . (5)
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Then, the Stokes-Einstein relation is extended for dispersed systems as

D
s

0
= kBT 〈

(

R
−1

FU

)

αα
〉, (6)

where Ds

0
is a matrix with 6× 6 elements and

(

R
−1

FU

)

αα
denotes the self part

of the inverse of the resistance matrix with 6 × 6 elements. The diagonal
elements of the translational part of Ds

0
is the short-time self-diffusion coeffi-

cients Ds

0
. Figure 1 shows the numerical results of Ds

0
/D0 with experimental

results[3].

Shear Viscosity

The shear viscosity is usually calculated by the direct way rather than indirect
way: The reason is that the interparticle force of hydrodynamic interaction
needed for the Green-Kubo formula of the shear viscosity is complicated.

Figure 2: Shear viscosities obtained by Stokesian Dynamics methods (solid
symbols), theoretical calculations (lines), and experimental results (open
symbols). (From Ref. 3.)

In the direct way, the bulk stress Σ is calculated under the shear flow.
Neglecting Brownian motion and interparticle forces, the bulk stress is given
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by
〈Σ〉 = −〈p〉I + 2η〈E∞〉 − n〈S〉, (7)

where p is the pressure and n is the number density of particles [5]. From
(4), the stresslet for force-free particles is given by

S =
(

RSU · R−1

FU
· RFE − RSE

)

· E∞. (8)

After taking the average of the stresslet S, the shear viscosity of dispersed
system ηr scaled by the fluid viscosity η is obtained as

−n〈S〉 = 2η (ηr(φ) − 1) 〈E∞〉, (9)

where φ is the volume fraction of particles. Note that in the dilute limit, we
have the Einstein’s result

ηr = 1 +
5

2
φ. (10)

Figure 2 shows the numerical results of ηr with experimental results[3].

Remarks

Using the Stokesian Dynamics method, we can calculate micro structures
of dispersed systems in (4) under arbitrary circumstances and evaluate any
quantities like sedimentation velocity and normal stresses as well, by the
direct way. To do this, however, we need to know the quantity to calcu-
late, as shown in (7). The Brownian contributions are shown for the diffu-
sion coefficient[6] and the bulk stress[7]. General form of the bulk stress is
shown[8] and thorough numerical analysis on the Péclet number dependence
of diffusion coefficients and shear viscosity is shown[9].

Acknowledgments

The author would like to acknowledge the support by DOE grant FG02-
99ER14966.



[Rev 1.5 2003/07/03 for “Powder Technology Handbook” 3rd Ed.]

Notation

a Particle radius (m)
D0 Diffusion coefficient of an isolated particle (m2/s)
Ds Self-diffusion coefficient (m2/s)
Ds

∞
Long-time self-diffusion coefficient (m2/s)

Ds

0
Short-time self-diffusion coefficient (m2/s)

Ds

0
Short-time self-diffusion matrix

E∞ Rate-of-strain tensor imposed to the system (1/s)
F Force and torque vector of particles
kB Boltzmann constant (J/K)
n Number density of particles (1/m3)
p Pressure (Pa)
R Resistance matrix
S Stresslet of particles (N m)
t Time (s)
T Temperature (K)
U (t) Velocity of particle at time t (m/s)
U − u

∞ Translational and rotational velocities relative to
the imposed flow of particles

x(t) Position of particle at time t (m)
η Viscosity of a fluid (Pa s)
ηr Effective viscosity of the dispersed system
φ Volume fraction of particles
Σ Bulk stress (N m)
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