Improvement of the Stokesian Dynamics method for systems with finite number of particles

By KENGO ICHIKI

Department of Applied Physics, University of Twente, 7500 AE Enschede, The Netherlands

(Received 25 July 2001)

An improvement of the Stokesian Dynamics method for many-particle systems is presented. A direct calculation of the hydrodynamic interaction is used rather than imposing periodic boundary conditions. There are two major difficulties with the accuracy and the speed of calculations. The accuracy discussed in this work is not concerned with the lubrication correction but rather focuses on the multipole expansion which until now has only been formulated up to the so-called FTS version or the first order of force moments. This is improved systematically by a real space multipole expansion with force moments and velocity moments evaluated at the centre of the particles, where the velocity moments are calculated through the velocity derivatives; the introduction of the velocity derivatives makes the formulation and the extensions straightforward. The reduction of the moments into the irreducible form is achieved by the Cartesian irreducible tensor. The reduction is essential to form a well-defined linear set of equations as a generalized mobility problem. The order of truncations is not limited in principle, and explicit calculations of two-body problems are shown with the order up to 7. The calculating speed is improved by a conjugate-gradient type iterative method which consists of a dot-product between the generalized mobility matrix and the force moments as a trial value in each iteration. This provides an $O(N^2)$ scheme where N is the number of particles in the system. Further improvement is achieved by the fast multipole method on the calculation of the generalized mobility problem in each iteration, and an $O(N)$ scheme for the non-adaptive version is obtained. Real problems are studied on the systems with $N = 400,000$ particles. For mobility problems the number of iterations is constant and the $O(N)$ performance is achieved, however, for resistance problems the number of iterations increases as almost $N^{1/2}$ with a high accuracy 10^{-6} and the total cost seems to be $O(N^{3/2})$.

1. Introduction

Microstructures of suspensions are governed by the hydrodynamic interactions among particles immersed in a viscous fluid, which is modeled using the Stokes approximation, and have attracted much attention from researchers in physics and chemical engineering. The hydrodynamic interactions have a long-range nature varying as $1/r$, where r is distance measured from a particle, and further it has the many-body feature, that is, it must be the solution of a boundary-value problem on the surface of all objects in the system. Therefore, the analytical approaches are basically difficult. In fact, even for rigid spherical particles, the exact solution is obtained only for two-body problems (Jeffrey & Onishi 1984); of course, this is partially because the symmetry of the geometry of surfaces
for two-body problems is much simpler than that on systems with three or more particles. Therefore, the numerical approaches have an important role to investigate such many-body problems. In this context, the Stokesian Dynamics method was developed (Brady & Bossis 1988). The Stokesian Dynamics method is based on Faxén’s law and the multipole expansion to obtain so-called far-field mobility matrix which has the effect of only low orders of force moments. In addition, the lubrication correction is introduced with the help of the exact solution of the two-body problem. The method gives us very accurate results for particle concentrations from dilute to dense limits.

On the many-body problems under the Stokes approximation, there are two different situations – a finite number of particles in an unbounded fluid and an infinite number of particles using periodic boundary conditions. The difference causes a qualitative change on the behaviour of particles with a constant force applied, in an unbounded case the particles fall faster as the separation among particles is smaller, while under periodic boundary conditions they fall slower as the concentration of particles is more dense. However the governing equation – the Navier–Stokes equation under the assumption of zero Reynolds number – is linear and the same for both cases, and we could study the problems with the same framework where the appropriate Green function for each situation is used. The Stokesian Dynamics method is one of the framework; Durlofsky, Brady & Bossis (1987) is for unbounded cases, and Brady, Phillips, Lester & Bossis (1988) is for periodic boundary conditions. Over ten years have passed since it had been developed, and we are now recognizing two major difficulties with it. One is the limitation of its approximation at the so-called FT5 version where only forces, torques and stresslets are considered in the multipole expansion; higher versions did not formulated. The other is that it is a very large and time intensive calculation which restricts the size of the system that can be simulated to a few hundred particles.

The aim of this paper is to establish a general formulation as a framework for Stokes flows, which can handle problems with as much accuracy as we want with less cost of the calculation and without the help of artificial assumptions. We try to formulate such numerical schemes in as simple a manner as possible; this simplicity gives us a good perspective of physics and easy extensions for various applications.

In this paper, we study a system with a finite number of rigid spherical particles in an unbounded fluid where Brownian motion are negligible, that is, the particle Péclet number is infinite. These problems attract less interest these days in contrast to the problems under periodic boundary conditions. However, this does not mean that the problems are solved; in fact, there are interesting problems, for example, breakup of sedimenting agglomerates of particles in a fluid (Nitsche & Batchelor 1997) and by shear flows (Kao & Mason 1975). Because the main purpose of this paper is to establish the formulation and the implementation into numerical schemes, the applications for these phenomena are outside the scope.

Though the lubrication correction is one of the main features of the traditional Stokesian Dynamics method, we skip the correction in this paper. This is because the lubrication correction is an approximation without theoretical justifications for more than two-body systems, and here we try to establish the framework without unclear assumptions. Although we do not concretely discuss the lubrication correction in this paper, you can add the correction into this formulation if desired (see §3.1 for details).

The practical goal of this paper is to improve the method by Durlofsky et al. (1987) on the accuracy and on the calculating speed. The improvement on the accuracy is achieved by the multipole expansion in real space with the proper reduction into the moments which contain only independent elements; we derive a generalized mobility problem relating the force moments to the velocity moments for an arbitrary order of
the truncation. The velocity moments are calculated through the velocity derivatives; this makes the formulation and the extensions straightforward. The improvement on the speed is achieved by iterative methods which are widely used for problems with sparse matrices. Further improvement on the speed is also done by the fast multiple method (FMM) developed by Greengard & Rokhlin (1987). The formulation of the FMM in this paper is rather different from the original and is an extension of the multipole expansion for the improvement on the accuracy. We only utilize a plain iterative method and a non-adaptive version of FMM; the preconditioning techniques for iterative methods and the adaptive scheme for the FMM are not discussed here and there is room to improve the present formulation using these techniques.

Because the present formulation is general, the extensions are straightforward. We could extend this formulation to the problems under periodic boundary conditions, replacing the Green function from the Oseen tensor to the tensor with the Ewald summation (Beenakker 1986 and Brady et al. 1988). Using the proper reduction of the moments, we could also extend this formulation to the systems of non-spherical objects. The extension to the non-rigid objects could be done including the double layer potential. Because the formulation does not utilize any special properties of hydrodynamics, this could be also the framework for other problems, such as Laplace problems, linear elastic problems, gravitational systems, and vortex dynamics.

Finally, we comment on the difference of the present formulation from other works. On the improvement of the accuracy, Mazur & van Saarloos (1982) developed the multipole expansion in Fourier space. Replacing the Fourier integral by the Fourier series, Ladd (1988) implemented the formulation under periodic boundary conditions. While the present formulation can be recognized as their real space version, there is a difference; Mazur & van Saarloos (1982) write the relation between moments formally, and Ladd (1988) implemented that formulation, that is, they treat the moments directly. In our formulation, we calculate the velocity moments through the velocity derivatives. As a result, there is no harmonics or trigonometric functions.

On the improvement of the speed, Sangani & Mo (1996) have applied the FMM to the Stokes flows under periodic boundary conditions based on their formulation previously given in Mo & Sangani (1994); their formulation is based on an expansion using harmonic functions. The present formulation of the FMM is not such a formulation in harmonic functions, but rather the extension of the multipole expansion for the accuracy. Although the spherical harmonics have an advantage for systems with a spherical symmetry, the advantage could be a restriction for systems without the symmetry.

In §2, we reformulate the multiple expansion and derive a generalized mobility problem. This gives us a systematic improvement on the accuracy of the Stokesian Dynamics method. Demonstrations for two-body problems are shown. In §3, we show efficient numerical schemes – an $O(N^2)$ scheme by an iterative method, and an $O(N)$ scheme by the fast multipole method. The performance of these schemes are shown in §4 first for a single calculation of a generalized mobility problem which appears in each iteration to solve the boundary condition of the physical problems, and second for the physical mobility and resistance problems.

2. Multipole expansion

In this section, we reformulate the multipole expansion method procedure for the hydrodynamic interactions among rigid spherical particles in Stokes flows and show the generalized mobility problem which is an extension of the grand mobility problem in the original Stokesian Dynamics method.
2.1. Expansion of velocity field

The velocity disturbance \(v(x) \) caused by rigid particles is written by the so-called singlelayer potentials (Ladyzhenskaya 1969) as

\[
v_i(x) = u_i(x) - u_i^\infty(x) = -\frac{1}{8\pi\mu} \sum_{\alpha=1}^{N} \int_{S_\alpha} dS(y) \cdot J_{ij}(x - y) f_j(y),
\]

where \(N \) is the number of particles, \(S_\alpha \) is the surface of particle \(\alpha \), \(u \) is the fluid velocity, \(u^\infty \) is the velocity in the case without particles, \(\mu \) is the viscosity of the fluid, \(f(y) \) is a force density on the surface \(y \), and \(J(r) \) is the Oseen tensor defined by

\[
J_{ij}(r) = \frac{1}{r} \left(\delta_{ij} + \frac{r_i r_j}{r^2} \right).
\]

We adopt the Einstein convention for repeated indices throughout this paper. We can expand \(y \) in the right-hand side of (2.1) at the centre of particle \(x^\alpha \) as

\[
v_i(x) = \sum_{\alpha=1}^{N} \sum_{m=0}^{p'} J_{ij}^{(m)}(x - x^\alpha) \cdot F_{j,k}^{(m)}(\alpha),
\]

where \(p' \) is the order of truncation (discussed in §2.4 in detail), \(F_{j,k}^{(m)}(\alpha) \) is the force moment of particle \(\alpha \) defined by

\[
F_{j,k}^{(m)}(\alpha) = -\int_{S_\alpha} dS(y) \cdot (y - x^\alpha)^m f_j(y).
\]

and \(J_{ij}^{(m)}(r) \) is the derivative of Oseen tensor defined by

\[
J_{ij}^{(m)}(r) = \frac{1}{8\pi\mu m!} \left[(-\nabla)^m J_{ij} \right](r).
\]

The force \(F_i \), torque \(T_i \), and stresslet \(S_{ij} \) are related to the zeroth-order and the first-order force moments as

\[
F_i^\alpha = F_i^{(0)}(\alpha),
\]

\[
T_i^\alpha = \epsilon_{ijk} F^{(1)}_{k,j}(\alpha),
\]

and

\[
S_{ij}^\alpha = \frac{1}{2} \left\{ F_{j,i}^{(1)}(\alpha) + F_{i,j}^{(1)}(\alpha) - \frac{2}{3} \delta_{ij} F_k^{(1)}(\alpha) \right\}.
\]

The inverse relations are given by

\[
F_i^{(0)}(\alpha) = F_i^\alpha,
\]

\[
F_{i,j}^{(1)}(\alpha) - \frac{1}{3} \delta_{ij} F_k^{(1)}(\alpha) = \frac{1}{2} \epsilon_{ijk} T_k^\alpha + S_{ij}^\alpha.
\]

2.2. Boundary conditions

Boundary conditions for the velocity on the surface of particles are satisfied by \(f \) in (2.1) or \(F \) in (2.3). In order to specify all elements of \(F \) in (2.3), we need the same number of boundary conditions on the velocity. There are, at least, three approaches – the boundary collocation method, the method using velocity derivatives, and the method using velocity moments.

In the boundary collocation method (Gluckman, Pfeffer & Weinbaum 1971), we directly apply the boundary conditions on a finite number of points on the surface called
the collocation points. Therefore, (2.3) is enough to apply the boundary conditions. While this approach is straightforward, it is not suitable for dynamic problems where the configuration is changing. This is because the results of the boundary collocation method are sensitive on the choice of collocation points and the scheme may fail for some cases. An alternative is to consider velocity derivatives V at the centre of the particle defined by

$$V^{(n)}_{i,j...}(\mathbf{x}^\alpha) = \frac{1}{n!} [\nabla_i^j v_i](\mathbf{x}^\alpha). \quad (2.11)$$

However, the velocity derivatives V have two disadvantages; the symmetry is different from that of the force moments F, and the velocity derivatives for the “self-part” becomes singular in the expansion (2.3). The former causes a difference between the numbers of given and unknown parameters to solve, and then the problem may be ill-defined. The latter singularity has to be avoided to obtain the regular solution.

As yet another approach, we introduce velocity moments \mathcal{U} defined by

$$\mathcal{U}^{(n)}_{i,j...}(\alpha) = \frac{1}{4\pi a^2} \int_{S_a} dS(y) \ (y - \mathbf{x}^\alpha)^n v_i(y), \quad (2.12)$$

where a is the radius of particles. The velocity moments \mathcal{U} are more complicated than the velocity derivatives V, but the two difficulties are removed. The velocity at the surface is given by $v(y) = U^\alpha + \Omega^\alpha \times (y - \mathbf{x}^\alpha) + E^\alpha \cdot (y - \mathbf{x}^\alpha)$, where U^α, Ω^α, and E^α are the translational velocity, the angular velocity, and the rate of strain for particle α relative to the imposed flow u^∞. Therefore, zeroth-order and first-order velocity moments are written as

$$\mathcal{U}^{(0)}_{i,j...}(\alpha) = U^\alpha, \quad (2.13)$$

and

$$\mathcal{U}^{(1)}_{i,j...}(\alpha) = \frac{a^2}{3} (\epsilon_{ikj} \Omega^\alpha_k E^\alpha_j), \quad (2.14)$$

or equivalently

$$\Omega^\alpha = \frac{3}{2a^2} \epsilon_{ikj} U^{(1)}_{i,j...}(\alpha), \quad (2.15)$$

$$E^\alpha_{ij} = \frac{3}{2a^2} \left\{U^{(1)}_{i,j...}(\alpha) + U^{(1)}_{j,i...}(\alpha)\right\}. \quad (2.16)$$

If we apply the surface integral in (2.12) for (2.3), the linear set of equations relating the velocity moments and the force moments are obtained as

$$\mathcal{U}^{(n)}_{i,j...}(\alpha) = \sum_{\beta=1}^{N} \sum_{m=0}^{p'} \mathcal{M}^{(n,m)}_{i,j,...,\beta...}(\alpha, \beta) \mathcal{F}^{(m)}_{\beta,j...}(\beta), \quad (2.17)$$

where

$$\mathcal{M}^{(n,m)}_{i,j,...,\beta...}(\alpha, \beta) = \frac{1}{4\pi a^2} \int_{S_a} dS(y) \ (y - \mathbf{x}^\alpha)^n \mathcal{F}^{(m)}_{i,j,...,\beta...}(y - \mathbf{x}^\beta). \quad (2.18)$$

We call (2.17) or its abbreviated form

$$\mathcal{U} = \mathcal{M} \cdot \mathcal{F} \quad (2.19)$$

as the generalised mobility problem and the matrix \mathcal{M} as the generalised mobility matrix. In the following, for simplicity we often omit indices and arguments in this way.

For the practical calculation of (2.19), we split the velocity moments \mathcal{U} into two parts
- self-part U^s and nonself-part U^t as
$$U = U^s + U^t,$$
where dash denotes the nonself-part. This is because J is much easier to calculate than M. The self-part U^s is written as
$$U^s = M^s \cdot F,$$
where the self-part of the mobility matrix M^s is given by
$$M^s_{ij} = \int \frac{dS(r) \cdot J^{(m)}_{ij}(r)}{|r|^n}.$$

It is shown in Appendix A that $M^{s(n,m)}$ has the following properties:
(i) $M^{s(n,m)}$ is non-zero only when n and m are both odd or both even.
(ii) $M^{s(n,m)}$ is zero for $m \geq n + 2$.

The explicit forms for the zeroth order and the first order are given as
$$M^{s(0,0)}_{ij} = \frac{\delta_{ij}}{6\pi \mu a},$$
and
$$M^{s(1,1)}_{ij} = \frac{1}{60\pi \mu a} \cdot \left[4d_{ij}d_{kl} - \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}\right].$$

For the nonself-part, it is convenient to consider the relation between velocity moments U^t and velocity derivatives V^t. The nonself-part of the velocity derivatives is defined by
$$V^{t(m)}(\alpha) = \frac{1}{m!} \left[\nabla^m v^{t\alpha}\right](x^\alpha),$$
where the nonself-part of the velocity disturbance caused by particles $\beta \neq \alpha$ is given by
$$v^{t\alpha}(x) = \sum_{\beta \neq \alpha} \sum_{m=0} v^{t(m)}_{\beta}(x - x^\beta) F^{(m)}_{\beta}(\beta).$$

To obtain the relation between V^t and U^t, we expand the velocity $v^{t\alpha}$ at the centre x^α as
$$v^{t\alpha}(y) = \sum_{m=0} V^{t(m)}_{x^\alpha}(\alpha)(y - x^\alpha),$$
Applying the surface integral, we have the nonself-part of the velocity moment for a particle α in terms of the velocity derivatives as
$$U_{ij,..}^{t(n)}(\alpha) = \sum_{m=0}^{n+2} V^{t(m)}_{x^\alpha}(\alpha) \frac{1}{4\pi \alpha^2} \int_{S_\alpha} dS(y) \cdot (y - x^\alpha)^{n+m},$$

The explicit relations up to second order are
$$U^{t(0)}_{i} = V^{t(0)}_{i} + \frac{a^2}{3} v^{t(2)}_{i,ij}i,$$
$$U^{t(1)}_{i,k} = \frac{a^2}{3} v^{t(1)}_{i,k} + \frac{a^4}{5} v^{t(3)}_{i,kj},$$
$$U^{t(2)}_{i,kl} = \frac{a^2}{3} \delta_{lk} v^{t(0)}_{i} + \frac{a^4}{15} \left(\delta_{lk} v^{t(2)}_{i} + 2v^{t(2)}_{i,k}\right) + \frac{4a^6}{35} v^{t(4)}_{i,kj},$$
Improvement of the Stokesian Dynamics

There are three remarks that pertain to (2.28). First, only even (odd) m’s are required when n is even (odd), because the integral on the right-hand side is a linear combination of Kronecker’s delta (see Appendix A). Second, the upper limit of the m-summation comes from the biharmonic nature of v,

$$\nabla^2 \nabla^2 v = 0.$$ \hspace{1cm} \text{(2.32)}

Therefore, the relation (2.28) gives the exact transformation from V' to U'. The fact that the upper limit of the summation of m in (2.28) is not n but $n + 2$ means that the finite-size effect is taken into account in $U^{(m)}$ by the trace of $V^{(m+2)}$. The final remark concerns the incompressibility

$$\nabla \cdot v = 0.$$ \hspace{1cm} \text{(2.33)}

The velocity derivatives satisfy $V^{(n)}_{i,ij\ldots} = 0$ for $n \geq 1$. On the other hand, the similar condition for the velocity moments is required only on the first order, that is,

$$U^{(1)}_{i,j} = 0,$$ \hspace{1cm} \text{(2.34)}

and $U^{(n)}_{i,ij\ldots} \neq 0$ for $n \geq 2$ in general. The terms in $U^{m}_{i,ij\ldots}$ always contain non-zero velocity derivatives such as $V^{(n)}_{i,ijk\ldots} \neq 0$ for $n \geq 2$. Therefore, we do not need to care about the reduction of the velocity moments due to the incompressibility on orders $n \geq 2$.

2.3. Reduction of moments

In resistance problems, for example, where particle velocities are obtained from the applied forces, we solve the generalised mobility problem (2.19) for the force moment F by the velocity moment U. Even in mobility problems, higher elements of the force moments are unknown, while those of the velocity moments are given from the rigidity of the particles (see §2.5 in detail). The elements of force and velocity moments are not independent of each other as we see in (2.34), and the linear set of equations (2.19) is ill-defined. To get the right solution, we need to reduce the equations into those relating the irreducible moments whose elements are all independent. The reduction is related to the nature of the velocity field itself – the incompressibility and the biharmonic nature – as was already discussed in §2.2. There is another dependence among elements of the moments from the nature of spherical particles. We discuss only the velocity moments U here, but the following discussions are applicable for the force moments F as well.

For velocity moments $U^{(m)}_{i,ij\ldots}$, interchange of any two indices on $l\ldots$ makes no difference. From this property, the independent number of elements at mth order becomes $(m + 1)(m + 2)/2$. We call the form of this reduction the ‘symmetric form’ (see table 1).

From the definition of the moments, the higher rank depends on the lower rank in the way of

$$U^{(n+2)}_{i,sk\ldots} = a^2 U^{(n)}_{i,jk\ldots}.$$ \hspace{1cm} \text{(2.35)}

To reduce this dependence, it is convenient to introduce the irreducible tensor which is symmetric and traceless. The reduction for a p-rank tensor $A^p_{i\ldots}$ is given by Damour & Iyer (1991) as

$$A^p_{i\ldots} = \sum_{k=0}^{[p/2]} a^p_k \delta_{i_1i_2} \delta_{i_3i_4} \ldots \delta_{i_{2k-1}i_{2k}} A^p_{i_{2k+1}i_{2k+2}i_{2k+3}i_{2k+4}\ldots i_{p} s_1s_2\ldots s_k},$$ \hspace{1cm} \text{(2.36)}

where

$$a^p_k = (-1)^k \frac{p!}{(p - 2k)!} \frac{(2p - 2k - 1)!!}{(2p - 1)!!(2k)!!}.$$ \hspace{1cm} \text{(2.37)}
and n!! means \((n-2)(n-4)\cdots 3\cdot 1\) for odd \(n\) and \(n(n-2)(n-4)\cdots 4\cdot 2\) for even \(n\), and \(0!! = 1\). The parentheses around the indices in (2.36) indicate the symmetrisation for the indices. For example, we have the following relations for \(p = 2\) and \(3\):

\[
\hat{A}_{ij}^2 = A_{(ij)}^2 - \frac{1}{3} \delta_{ij} A_{ss}^2,
\]

and

\[
\hat{A}_{ijk}^2 = A_{(ijk)}^2 - \frac{1}{5} \left(\delta_{ij} A_{(kss)}^2 + \delta_{jk} A_{(iis)}^2 + \delta_{ki} A_{(jss)}^2 \right).
\]

For the moments in our case, the indices are symmetric by the definition, so that we do not need to care about the symmetrisation. By this reduction, the number of independent elements on \(m\)th order becomes \(2m + 1\). The reduced elements are summarised in table 1.

<table>
<thead>
<tr>
<th>order (m)</th>
<th>full form</th>
<th>symmetric form</th>
<th>irreducible form</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(U^{(0)}_0, U^{(0)}_n, U^{(0)}_n)</td>
<td>(U^{(0)}_0, U^{(0)}_n, U^{(0)}_n)</td>
<td>(U^{(0)}_0, U^{(0)}_n, U^{(0)}_n)</td>
</tr>
<tr>
<td>1</td>
<td>(U^{(1)}1, U^{(1)}{n+1}, U^{(1)}_{n+1})</td>
<td>(U^{(1)}1, U^{(1)}{n+1}, U^{(1)}_{n+1})</td>
<td>(U^{(1)}1, U^{(1)}{n+1}, U^{(1)}_{n+1})</td>
</tr>
<tr>
<td>2</td>
<td>(U^{(2)}{2}, U^{(2)}{2n+2}, U^{(2)}_{2n+2})</td>
<td>(U^{(2)}{2}, U^{(2)}{2n+2}, U^{(2)}_{2n+2})</td>
<td>(U^{(2)}{2}, U^{(2)}{2n+2}, U^{(2)}_{2n+2})</td>
</tr>
<tr>
<td>3</td>
<td>(U^{(3)}{3}, U^{(3)}{3n+3}, U^{(3)}_{3n+3})</td>
<td>(U^{(3)}{3}, U^{(3)}{3n+3}, U^{(3)}_{3n+3})</td>
<td>(U^{(3)}{3}, U^{(3)}{3n+3}, U^{(3)}_{3n+3})</td>
</tr>
</tbody>
</table>

Table 1. Elements of the moments in three forms—“full form”, “symmetric form”, and “irreducible form”. The reduction denoted by \(-\) is of the incompressibility \(U_{i} = U_{n+1} = U_{n+1} = 0\). The reduction denoted by \(-\) is of the irreducibility and the symmetry on \(k \cdots\) in \(U_{k \cdots}\) respectively. The first index on the moments with \(m \geq 2\) is omitted because they are the same.

We write this reduction operator as \(\mathcal{P}\) and the inverse operator (recovery operator) as \(\mathcal{Q}\). The explicit form of \(\mathcal{P}\) and \(\mathcal{Q}\) are shown in Appendix B. By these operators, irreducible moments \(\bar{U}\) and \(\bar{F}\) are related as

\[
\bar{U} = \mathcal{P} \cdot \mathcal{M} \cdot \mathcal{Q} \cdot \bar{F},
\]

which we call the irreducible generalised mobility problem. The procedure to calculate (2.40) is discussed in §2.4 and the application of the boundary conditions for it is discussed in §2.5.
2.4. Truncation

The truncation implicitly introduced in (2.3) should be considered on the irreducible form (2.40) where the independent elements are explicitly specified; we introduce the order of truncation p as the maximum order of \mathcal{U} and \mathcal{F} in (2.40).

The practical calculation of (2.40) is given by the following six-step procedure for particles $\alpha = 1, \ldots, N$ where we write the order of truncation p explicitly:

(i) Recover the force moments \mathcal{F} by the irreducible force moments $\tilde{\mathcal{F}}$ as the input by

$$
\begin{bmatrix}
\mathcal{F}^{(0)} \\
\vdots \\
\mathcal{F}^{(p)} \\
\mathcal{F}^{(p+1)} \\
\mathcal{F}^{(p+2)}
\end{bmatrix}
(\alpha) =
\begin{bmatrix}
\mathcal{Q}^{(0,0)} & \cdots & \mathcal{Q}^{(0,p)} \\
\vdots & \ddots & \vdots \\
\mathcal{Q}^{(p,0)} & \cdots & \mathcal{Q}^{(p,p)} \\
\mathcal{Q}^{(p+1,0)} & \cdots & \mathcal{Q}^{(p+1,p)} \\
\mathcal{Q}^{(p+2,0)} & \cdots & \mathcal{Q}^{(p+2,p)}
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(0)} \\
\vdots \\
\mathcal{F}^{(p)}
\end{bmatrix}
(\alpha),
$$

(2.41)

(ii) Calculate the nonself-part of the velocity derivatives \mathcal{V} from \mathcal{F} by

$$
\begin{bmatrix}
\mathcal{V}^{(0)} \\
\vdots \\
\mathcal{V}^{(p+2)}
\end{bmatrix}
(\alpha) = \sum_{\beta \neq \alpha} \begin{bmatrix}
\mathcal{K}^{(0,0)} & \cdots & \mathcal{K}^{(0,p+2)} \\
\vdots & \ddots & \vdots \\
\mathcal{K}^{(p+2,0)} & \cdots & \mathcal{K}^{(p+2,p+2)}
\end{bmatrix}
(\mathbf{x}^\alpha - \mathbf{y}^\beta) \cdot
\begin{bmatrix}
\mathcal{F}^{(0)} \\
\vdots \\
\mathcal{F}^{(p+2)}
\end{bmatrix}
(\beta),
$$

(2.42)

where

$$
\mathcal{K}^{(n,m)}_{i,j,\ldots,k}(\mathbf{r}) = \frac{1}{n!}
\left[\nabla_{i,j,\ldots,k}^{(n,m)} \right](\mathbf{r}) = \frac{1}{8\pi \mu n! m!} \left[\nabla_{i,j,\ldots,k}^{n} \left(-\nabla_{j,k,\ldots}^{m} \right) \mathcal{J}_{ij} \right](\mathbf{r}),
$$

(2.43)

(iii) Convert the velocity derivatives \mathcal{V} to the velocity moments \mathcal{U} by (2.28) as

$$
\begin{bmatrix}
\mathcal{U}^{(0)} \\
\vdots \\
\mathcal{U}^{(p)}
\end{bmatrix}
(\alpha) =
\begin{bmatrix}
\mathcal{D}^{(0,0)} & \cdots & \mathcal{D}^{(0,p)} \\
\vdots & \ddots & \vdots \\
\mathcal{D}^{(p,0)} & \cdots & \mathcal{D}^{(p,p)}
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(0)} \\
\vdots \\
\mathcal{F}^{(p)}
\end{bmatrix}
(\alpha),
$$

(2.44)

where

$$
\mathcal{D}^{(n,m)} = \frac{a^{n+m}}{4\pi} \int_{|\mathbf{r}|=1} dS(\mathbf{r}) \hat{\mathbf{r}}^{n+m}.
$$

(2.45)

(iv) Calculate the self-part of the velocity moment \mathcal{U}^s by

$$
\begin{bmatrix}
\mathcal{U}^s^{(0)} \\
\vdots \\
\mathcal{U}^s^{(p)}
\end{bmatrix}
(\alpha) =
\begin{bmatrix}
\mathcal{M}^s^{(0,0)} & \cdots & \mathcal{M}^s^{(0,p)} \\
\vdots & \ddots & \vdots \\
\mathcal{M}^s^{(p,0)} & \cdots & \mathcal{M}^s^{(p,p)}
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(0)} \\
\vdots \\
\mathcal{F}^{(p)}
\end{bmatrix}
(\alpha),
$$

(2.46)

where \mathcal{M}^s is given by (2.22).

(v) Calculate the velocity moments \mathcal{U} summing the self-part and the nonself-part as

$$
\begin{bmatrix}
\mathcal{U}^{(0)} \\
\vdots \\
\mathcal{U}^{(p)}
\end{bmatrix}
(\alpha) =
\begin{bmatrix}
\mathcal{U}^s^{(0)} \\
\vdots \\
\mathcal{U}^s^{(p)}
\end{bmatrix}
(\alpha) +
\begin{bmatrix}
\mathcal{U}^{(0)} \\
\vdots \\
\mathcal{U}^{(p)}
\end{bmatrix}
(\alpha),
$$

(2.47)
(vi) Reduce the velocity moments \mathcal{U} into $\hat{\mathcal{U}}$ as

$$
\begin{bmatrix}
\hat{\mathcal{U}}^{(0)} \\
\vdots \\
\hat{\mathcal{U}}^{(p)}
\end{bmatrix}
=
\begin{bmatrix}
\mathcal{P}^{(0,0)} & \cdots & \mathcal{P}^{(0,p)} \\
\vdots & \ddots & \vdots \\
\mathcal{P}^{(p,0)} & \cdots & \mathcal{P}^{(p,p)}
\end{bmatrix}
\begin{bmatrix}
\mathcal{U}^{(0)} \\
\vdots \\
\mathcal{U}^{(p)}
\end{bmatrix}
=
\hat{\mathcal{U}}^{(\alpha)}.
$$

The above six-step procedure as a whole could be recognised as a subroutine of (2.40) which gets the irreducible force moment $\hat{\mathcal{F}}$ as the input and returns the irreducible velocity moment $\hat{\mathcal{U}}$.

In the Stokesian Dynamics method, three types of truncation — F, FT and FTS versions — are presented. The F version corresponds to the truncation $p = 0$ where the generalised mobility matrix relates the force \mathcal{F} to the translational velocity \mathcal{U}. In the FT version, the torque \mathcal{T} that is the asymmetric part of the first-order force moments is also taken into account and the corresponding angular velocity Ω is considered. In the FTS version, the stresslet \mathcal{S} that is the remnant symmetric part of the first-order force moments and the corresponding rate of strain \mathcal{E} are considered, corresponding to the truncation of $p = 1$. The formulation in this paper is completely equivalent to that in Durlofsky et al. (1987) up to the FTS version.

We note that even in the truncation at order p on $\hat{\mathcal{F}}$ and $\hat{\mathcal{U}}$ in (2.40), we have to recover the force moments up to the order $p + 2$, calculate the velocity derivatives at order $p + 2$, and convert them into the velocity moments at the order p. Otherwise, we would lose the finite-size effect. In fact, even for $p = 0$, the finite-size effect is considered as the trace of the second-order derivatives of the Green function and we get the Rotne–Prager tensor as the generalised mobility matrix. Therefore, the truncation order p' in (2.3), (2.17), and (2.26), is $p + 2$, however, the recovered moments $\mathcal{F}^{(p+1)}$ and $\mathcal{F}^{(p+2)}$ do not contain the contribution of $\mathcal{F}^{(p+1)}$ nor $\mathcal{F}^{(p+2)}$.

2.5. Higher-order versions for rigid particles

From the rigidity of the surface, essential degrees of freedom for rigid particles are $6N$; independent variables are force \mathcal{F}, torque \mathcal{T}, translational velocity \mathcal{U} and angular velocity Ω, and the irreducible moments of the velocity with higher orders should vanish. This means that the higher moments of velocity are prescribed and the corresponding higher moments of forces are solved for both mobility and resistance problems. The contracted mobility and resistance matrices which relate the independent variables for rigid particles have $6N \times 6N$-dimensions, depend on the order of the truncation p, and converge to the exact solution as $p \to \infty$. In linear flows with the rate of strain, the degrees of freedom are the same as FTS version. We call the former as the FT-contraction and the latter as the FTS-contraction.

We denote the lower moments by subscript l which correspond to the relevant parts (\mathcal{F} and \mathcal{T} in the FT-contraction and \mathcal{F}, \mathcal{T}, and \mathcal{S} in the FTS-contraction) and the higher moments by subscript h which could be contracted. Then, we can rewrite (2.40) as

$$
\begin{bmatrix}
\hat{\mathcal{U}}_l \\
\hat{\mathcal{U}}_h
\end{bmatrix}
=
\begin{bmatrix}
\hat{\mathcal{M}}_{ll} & \hat{\mathcal{M}}_{lh} \\
\hat{\mathcal{M}}_{hl} & \hat{\mathcal{M}}_{hh}
\end{bmatrix}
\begin{bmatrix}
\hat{\mathcal{F}}_l \\
\hat{\mathcal{F}}_h
\end{bmatrix}.
$$

From the rigidity $\hat{\mathcal{U}}_h = 0$, the corresponding force moment $\hat{\mathcal{F}}_h$ is solved as

$$
\hat{\mathcal{F}}_h = -\left(\hat{\mathcal{M}}_{hh}\right)^{-1} \cdot \hat{\mathcal{M}}_{hl} \cdot \hat{\mathcal{F}}_l.
$$

Therefore, we have the contracted mobility problem as

$$
\hat{\mathcal{U}}_l = \hat{\mathcal{M}}^{*}(p) \cdot \hat{\mathcal{F}}_l,
$$
Figure 1. Scalar functions $X_i^1(r; p)$ of the two-body resistance problem for various orders of the truncation. ‘F’ and ‘FTS’ show the corresponding values obtained by the analytical expressions, and ‘exact’ shows the exact solution by Jeffrey & Onishi (1984). The results by the present formulation are shown as $p = 0, 1, \ldots, 7$.

where the contracted mobility matrix $\tilde{\mathcal{M}}^\ast(p)$ is given by

$$\tilde{\mathcal{M}}^\ast(p) = \tilde{\mathcal{M}}_{ll} - \tilde{\mathcal{M}}_{lh} \cdot (\tilde{\mathcal{M}}_{hh})^{-1} \cdot \tilde{\mathcal{M}}_{hl}.$$ \hfill (2.52)

This matrix depends on the truncation p and is exact as $p \to \infty$. Its inverse $\tilde{R}^\ast(p) = (\tilde{M}^\ast)^{-1}$ is the corresponding contracted resistance matrix which gives the contracted resistance problem

$$\tilde{F}_i = \tilde{R}^\ast(p) \cdot \tilde{U}.$$ \hfill (2.53)

The dimensions of $\tilde{F}^\ast(p)$ and $\tilde{R}^\ast(p)$ are $6N \times 6N$ for the FT-contraction and $11N \times 11N$ for the FTS-contraction.

In the practical calculation of the contracted problems, we do not want to treat the irreducible mobility matrix \tilde{M} nor its decomposition in (2.49) explicitly. The six-step procedure in §2.4 meets this requirement; the procedure to calculate \tilde{U} from \tilde{F} is enough to solve the linear equations by iterative methods. (Concrete treatments are shown in Appendix C.)

For the tests of the formulation and the implementation, we solve the two-body prob-
problems and compare them to the exact solution by Jeffrey & Onishi (1984). First, we calculate the resistance problem for $p = 0, 1, \cdots, 7$. Figure 1 shows one of the scalar functions in the resistance matrix $X_{11}^A(r; p)$ where r is the distance between the spheres divided by the radius. This shows that the results converge to the exact solution as $p \to \infty$, and those of $p = 0$ and $p = 1$ are completely identical to the analytical expression in the F version

$$X_{11}^A(r; 0) = \frac{4r^6}{4r^6 - (3r^2 - 2)^7},$$

(2.54)

and that in the FTS version

$$X_{11}^A(r; 1) = \frac{20r^6 \left(-2880 + 2208r^2 - 260r^4 - 75r^6 + 20r^{10}\right)}{2304 - 21120r^2 + 55600r^4 - 90600r^6 + 45915r^8 - 800r^{10} - 1800r^{12} - 900r^{14} + 400r^{16}}.$$

(2.55)

To estimate the truncation errors of the formulation quantitatively, we compare the truncated solutions to the exact solution for resistance problems in figure 2 (a), and the truncated solutions to that with a higher truncation $p = 8$ for mobility problems in figure 2 (b). We see that both for resistance and mobility problems, the errors are scaled by $r^{-2(p+2)}$. We note that the errors of the resistance function X_{11}^A and the mobility function y_{11}^A have the same scaling and others have higher orders, so that the leading error in the formulation is $O(r^{-2(p+2)})$ for large r.

We can understand the order as follows. We consider the mobility problem first. On the truncation p, the leading error comes from the contribution of $\mathcal{J}^{(p+1)}$ which would appear in $\mathcal{M}_{lh} \cdot \left(\mathcal{M}_{hh}^{-1} \cdot \mathcal{M}_{hl}\right)$ with higher truncations. Because the self-part which has r^0 scaling appears only in \mathcal{M}_{hh} (and therefore, its inverse), the leading error relating to $\mathcal{J}^{(p+1)}$ comes from the lowest order in \mathcal{M}_{hh} and \mathcal{M}_{hl} that have $r^{-(p+2)}$ scaling. Therefore, the error in mobility problems is scaled by $r^{-2(p+2)}$. In fact, not only for mobility problems but also for resistance problems, \mathcal{U}_l is always specified and \mathcal{F}_h is unknown for rigid particles. Therefore, even in resistance problems, the truncation error comes from the contribution of $\mathcal{F}^{(p+1)}$ and the error on the velocity moments \mathcal{U}_l has $r^{-2(p+2)}$ scaling. Because the connection with the lowest order from \mathcal{U}_l to \mathcal{F}_l is in the self-part, the error of resistance problems is also scaled by $r^{-2(p+2)}$.

3. Fast scheme

The bottleneck in the Stokesian Dynamics method is in the inversion of the mobility matrix which takes the $O(N^3)$ cost of calculations. This calculation appears to introduce the lubrication correction and also to solve the linear equations as in (2.52). Therefore, we need to improve the calculation of the linear set of equations faster than $O(N^3)$. As suggested by Ichiki & Brady (2001), the application of conjugate-gradient type iterative methods is the first step to the improvement. The iterative method for the Stokesian Dynamics method gives an $O(N^2)$ scheme which consists of the calculation of the dot product between a mobility matrix and a force moment. This calculation is the next bottleneck. The fast multipole, which is a simple extension of the conventional multipole expansion, is applicable for the calculation and gives an $O(N)$ scheme.

To eliminate confusions, we note that the terms such as $O(N^2)$ and $O(N)$ in this paper are for the calculating cost under fast convergence on the iterative procedure, or more precisely, for that on a single iteration. Therefore, if we need a large number of iterations to solve the problem with the scaling N^a, for example, the total calculation needs an
Figure 2. Errors of a scalar function on two-body problems. Figure (a) shows the error of resistance functions $X_{11}(r; p)$ from the exact solution $X_{11}(r; p = \infty)$ and (b) shows that of mobility functions $x_{11}(r; p)$ from a higher solution $x_{11}(r; p = 8)$ respectively.
$O(N^{2+\alpha})$ cost for the $O(N^2)$ scheme and an $O(N^{1+\alpha})$ cost for the $O(N)$ scheme. Further discussion is given in §4.

3.1. Iterative method – $O(N^2)$ scheme

We summarise what iterative methods are, and discuss the application to the current problems. Let us consider a standard form of linear set of equations,

$$b = A \cdot x,$$ \hspace{1cm} (3.1)

where a coefficient matrix A and a vector b are given and the vector x is to be determined. The conjugate-gradient type iterative methods consist only of the calculation of the dot-product between the coefficient matrix A and an arbitrary vector y. Therefore, it becomes very efficient when the calculation of $A \cdot y$ becomes fast as for sparse-matrix problems. This also means that even for the dense matrices like the current problems, the method gives the result with the cost of the dot-product calculation under fast convergence.

Now we consider the linear equation (2.49). For resistance problems, the coefficient matrix is \mathcal{M}, the given vector is \vec{U}, and the vector to be determined is \tilde{F}. Therefore, we can apply the iterative method directly, giving the calculation of (2.40) by the six-step procedure in §2.3. Because all six steps in the calculation could be done at least with the $O(N^2)$ cost, the total cost of the calculation would be $O(N^2)$. For mobility problems and for mixed problems where both mobile and fixed particles exist, the situation is a little different. However, this difference is not crucial and we can also solve those problems by the iterative method with the same six-step procedure (see Appendix C for details). The detailed results on the number of iterations for mobility and resistance problems are shown in §4.2.

Inclusion of the lubrication correction in the original Stokesian Dynamics method can be treated as follows. The resistance matrix is approximated by the lubrication matrix \mathcal{L} as $(\mathcal{M})^{-1} + \mathcal{L}$, where \mathcal{M} is the mobility matrix with a certain truncation like FTS. The lubrication matrix \mathcal{L} could be constructed by the two-body exact solution by Jeffrey & Onishi (1984). By this approximation for resistance matrix, we have

$$\{(\mathcal{M})^{-1} + \mathcal{L}\} \cdot \vec{U} = \tilde{F}.$$ \hspace{1cm} (3.2)

Multiplying \mathcal{M} on both sides from left, we obtain the inverse-free equation

$$(1 + \mathcal{M} \cdot \mathcal{L}) \cdot \vec{U} = \mathcal{M} \cdot \tilde{F}.$$ \hspace{1cm} (3.3)

This is a modification of the generalised mobility problem (2.19) and a generalised linear set of equations for \vec{U} and \tilde{F}. The treatment of the generalised linear set of equations is shown in Appendix C, where we need two types of dot-products $\cdot \tilde{F}$ and $\mathcal{L} \cdot \tilde{F}$ for arbitrary moments \vec{U} and \tilde{F}. We can utilise the six-step procedure for the former and we could calculate the latter with the $O(N)$ cost because of the short-range nature of \mathcal{L}. We note that the breakdown of the lubrication correction in the Stokesian Dynamics method and the empirical prescription to overcome the breakdown were recently reported by Cichocki, Ekiel-Jeżewska & Wajnryb (1999). Because this prescription is only on the lubrication matrix \mathcal{L}, you could apply their correction for the current formulation, if you want. We do not go into the detailed discussions here.

We comment on the variety of iterative methods briefly. The generalised minimum residual method (GMRES) by Saad & Schultz (1986) is widely used, but it works well only for symmetric matrices. In our problems, the bare matrix \mathcal{M} for higher versions could be slightly non-symmetric because of the reduction. Even in the FTS version, if we use the vectors with 11 elements for each particle as

$$\{U_x, U_y, U_z, \Omega_x, \Omega_y, \Omega_z, E_{xx}, E_{xy}, E_{xz}, E_{yy}, E_{yz}\}$$ \hspace{1cm} (3.4)

K. Ichiki
and

\[\{ F_x, F_y, F_z, T_x, T_y, T_z, S_{xx}, S_{xy}, S_{xz}, S_{yy}, S_{yz}, S_{zz} \}, \]

the mobility matrix in the original Stokesian Dynamics method also becomes non-symmetric. While the coefficient matrix is \(\mathcal{M} \) for resistance problems, it is a certain composition of the sub-matrices of \(\mathcal{M} \) for mobility problems (see (C2) in Appendix C). For non-symmetric but definite matrices, the method called GPBi-CG by Zhang (1997) which is a variant of bi-conjugate gradients stabilised method (BiCGSTAB) by van der Vorst (1992) would be suitable. We utilise the method in this paper. We do not go into the details of iterative methods further, but refer to a textbook by Weiss (1996) where various methods are described.

Before proceeding, we consult the cost of calculation in the six-step procedure to see where is the next bottleneck. The steps except for (ii) are the calculation for each particle, and the cost is \(O(N) \). On the other hand, the calculation of the step (ii) contains the summation for \(N - 1 \) particles, so that the cost is \(O(N^2) \), which is the current bottleneck.

3.2. Fast multipole method - \(O(N) \) scheme

In this section, we discuss further improvement using the fast multipole method (FMM). FMM is originally developed by Greengard & Rokhlin (1987) for Laplace problems in two- and three-dimensions with the non-adaptive cell structure, and is extended shortly to the adaptive one by Carrier, Greengard & Rokhlin (1988). The application to low-Reynolds-number flows is shown by Sangani & Mo (1996) for periodic boundary conditions.

While the practical aim of this formulation is to make an \(O(N) \) scheme for a finite number of particles in an unbounded fluid, we would like to implement the FMM in a simple way; we reformulate the FMM extending the previous multipole expansion for a particle to the expansion for a group of particles with the velocity derivatives. This is the difference of this formulation from both the original FMM and Sangani and Mo’s formulation; while they use spherical harmonics, we use Cartesian moments and Cartesian derivatives which consist only of algebraic manipulations. We only consider the non-adaptive scheme in this paper.

3.2.1. Procedure of FMM

The next step to improve the \(O(N^2) \) scheme is in the calculation of the step (ii), that is, (2.42), or its abbreviated form

\[V' = K \cdot F, \]

which contains \((N - 1) \) summation for \(N \) particles. We note that in this calculation the force moment \(F \) is given as a trial value in the iterative method. The point of the FMM is that we treat particles as a group both for \(\beta \)’s in force moments \(F(\beta) \) and for \(\alpha \)’s the velocity derivatives \(V'(\alpha) \), rather than treat particles individually.

We introduce a hierarchical cell structure and formulate the calculations between the levels of the cell structure. The primary cell at level 0 contains all the particles. At the next level 1, we divide the primary cell into \(2^d \) cells called ‘children.’ The division is repeated up to the maximum level \(l_m \), where the cells are called ‘leaves’. All cells except for leaves have 8 children and all cells except for the primary cell have their ‘parent’ cell. In this cell structure, the procedure of the FMM has two stages - upward-pass and downward-pass. In the upward-pass, we calculate the force moments from all particles in a cell \(C \)

\[F(C) = \sum_{\beta \in C} S_F(x_C, x_\beta) \cdot F(\beta), \]

(3.7)
for all cells in all levels where \(\mathbf{x}_C \) is the centre of the cell \(C \). The operator \(S_F(\mathbf{x}_2, \mathbf{x}_1) \) transforms the origin of a force moment from \(\mathbf{x}_1 \) to \(\mathbf{x}_2 \). From the definition of force moments, \(S_F \) is obtained by the binomial theorem (See Appendix D.1). In the downward-pass, we calculate the velocity derivatives in a recursive way. For this purpose, we define the operator \(S_V(\mathbf{x}_2, \mathbf{x}_1) \) which transforms the position of the velocity derivatives from \(\mathbf{x}_1 \) to \(\mathbf{x}_2 \). The derivation is straightforward, because the derivatives at \(\mathbf{x}_2 \) are the coefficients of the Taylor expansion at \(\mathbf{x}_1 \). The detailed derivation and the explicit form of \(S_V \) are given in Appendix D.2. We also introduce the velocity derivatives of the contributions from the “well-separated” cells of \(C \) and \(C \)’s ancestors defined by

\[
\mathcal{W}(C) = \sum_{\beta \in N_C} K(C, \beta) \cdot \mathcal{F}(\beta),
\]

where \(N_C \) is the near cell for the cell \(C \) to maintain a certain accuracy for the expansion.

The concrete procedure of the FMM consists of the following five steps:

(i) Calculate the force moment for leaves \(L \) directly by the definition (3.7) as

\[
\mathcal{F}(L) = \sum_{\beta \in L} S_F(\mathbf{x}_L, \mathbf{x}_\beta) \cdot \mathcal{F}(\beta),
\]

where \(\mathcal{F}(\beta) \) is a known variable for all particles \(\beta \).

(ii) Calculate the force moment of a cell \(P \) at a level \(l \) by its children \(C \) at the level \(l+1 \) as

\[
\mathcal{F}(P) = \sum_{C} S_F(\mathbf{x}_P, \mathbf{x}_C) \cdot \mathcal{F}(C),
\]
where the summation are taken for cells whose parent is \(P \). By this recursive relation, we can calculate all force moments at the levels from \(l_m - 1 \) to \(2 \).

(iii) Clear all \(W \)'s at the level 1 (at least), because the cells at the level has no well-separated cell.

(iv) Calculate \(W(C) \) by the parent's \(W(P) \) as

\[
W(C) = S_V(\mathbf{x}^C, \mathbf{x}^P) \cdot W(P) + \sum_{W \in W_C} K(C, W) \cdot \mathcal{F}(W),
\]

(3.11)

where \(W_C \) is a cell which is not \(N_C \) on the same level of \(C \), and whose parent is \(N^P \); the second term in the right-hand side is the contribution not included in \(W(P) \). Figure 3 shows the situation in two-dimensional case for simplicity. By this relation, we can calculate \(W \) for all cells at the levels from 2 to \(l_m \).

(v) Add the contribution from the particles in the near cells, and get the velocity derivatives for the particle \(\alpha \) as

\[
V'(\alpha) = S_V(\mathbf{x}^\alpha, \mathbf{x}^L) \cdot W(L) + \sum_{\beta \in N^L, \beta \neq \alpha} K(\alpha, \beta) \cdot \mathcal{F}(\beta).
\]

(3.12)

This five-step procedure replaces the direct calculation of (3.6) and gives an \(O(N) \) scheme.

We note that the transformation of \(\mathcal{F} \) by \(S_F \) is exact, and there is no approximation at steps (i) and (ii). Therefore, the calculated values in the upward-pass is exactly the same as those by the definition (2.4) for the cells, in principle; this gives a good test for programs.

3.2.2. Cost estimation

We estimate the calculating cost on the above non-adaptive FMM scheme. Giving force moments for all particles as a trial value in the iteration, we can calculate the velocity derivatives with the following cost for each step

(i) Calculations of (3.9) for leaves \(L \) are \(O(N) \).

(ii) Calculations of (3.10) for cells at the levels from \(l_m - 1 \) to \(2 \) are \(O(8n_C) \), where \(n_C \) is the number of all cells in the hierarchy.

(iii) Clear of \(W \) at level 1 is \(O(1) \).

(iv) Calculations of (3.11) at the levels from \(l = 2 \) to \(l_m \) are \(O(n_C(1 + n_W)) \), where \(n_W \) is the number of well-separated cells for a cell.

(v) Calculations of (3.12) for all particles are \(O(N(1 + n_L)) \), where \(n_L \) is the number of particles in a leaf cell.

The cost of step (iii) is negligible for large \(N \). The number of well-separated cells \(n_W \) is constant with \(N \). The number of all cells \(n_C \) and the number of particles in a leaf cell \(n_L \) are given as

\[
n_C = \sum_{l=0}^{l_m} 8^l = \frac{8^{l_m+1} - 1}{7},
\]

(3.13)

\[
n_L \approx \frac{N}{8^{l_m}},
\]

(3.14)

where we expect that the configuration is homogeneous in the primary cell. With \(l_m \) fixed, the cost at the step (v) scaled by \(N^2 \) dominates for large \(N \). On the other hand, if we choose \(l_m \) as

\[
l_m \approx \log N,
\]

(3.15)
it is expected that n_C is $O(N)$ and n_L is $O(1)$. Therefore, the costs at the steps (ii), (iv), and (v) are scaled by N, and we could calculate W' for all particles by a given force moments F with the cost of $O(N)$.

3.2.3. Truncations

The expansion of the surface force density at the particle centre discussed in §2 and that of the force moments of particles at the centre of a group in the FMM are independent. As shown in §2.5, the truncation error at the order p is $O(r^{-2(p+2)})$. This means that the accuracy is better for larger r, and the maximum error occurs on the pair with the smallest separation.

On the expansion in the FMM, we have to keep a certain condition to get good estimations. For this purpose, we have introduced N^C in (3.8) and have defined the cell W^C in (3.11) by N^C as follows;

- W^C is at the same level of C.
- W^C's parent is N^P.
- W^C is not N^C.

By the definitions, it is satisfied that the well-separated cells of C, those of C's ancestors, and the near cell of C completely cover all region of the primary cell without overlaps. The typical definition of N^C is the nearest-neighbour cells including cell C itself, and there are 3^d cells at most. Defining n_s as the number of spacing cells to the nearest well-separated cell, we can denote this situation as $n_s = 1$. We note that this is not the only choice. For example, we can define N^C as the cells inside the cubic region centred by C with 5 times size of C ($n_s = 2$), where 5^3 cells would be N^C and the results under this situation would be more accurate.

Errors on the multipole expansion are characterised by the order of the truncation and the ratio r/R, where r is the distance between the source and the expansion point, and R is that between the expansion point and the observation point. In the FMM, the ratio
Figure 5. Relative errors of X^A_{11} for $p = 1$ are plotted with the separation r. The broken line denoted by 'direct' shows the relative error of $X^A_{11}(r; p = 1)$ in (2.56) which is r^{-4} for large r.

is controlled by n_s as

$$\frac{r}{R} \leq \frac{\sqrt{3}}{2(n_s + 1)},$$

(3.16)

The worst situation for $n_s = 1$ is shown in figure 4. If we truncate the force moments in (3.8) at the order q, $K^{(n,m)}$ for $n + m > q$ would be negligible, and the maximum error would be scaled by $(\frac{\sqrt{3}}{2(n_s + 1)})^{q+1}$. Therefore, the truncation error in the FMM is independent of r.

To estimate the empirical error on the current scheme, we solve the two-body resistance problem where the expansion points are selected as in the worst situation in figure 4. We estimate the relative error on the scalar function X^A_{11} defined as

$$\left| \frac{[X^A_{11}]^{FMM}(r; p, q, n_s) - X^A_{11}(r; \infty)}{X^A_{11}(r; \infty) - 1} \right|,$$

(3.17)

where $[X^A_{11}]^{FMM}(r; p, q, n_s)$ is the result by the $O(N)$ scheme. The unity on the denominator is the single-body contribution. Figure 5 shows the relative errors for $p = 1$. For small r the error on $X^A_{11}(r; p = 1)$ dominates, and for large r the error of the FMM...
dominates which is independent of \(r \). Figure 6 shows the scaling of the error at \(r = 100 \) with \((n_s + 1)^{-\frac{1}{q+1}} \) for various parameters including \(p = 2, \cdots, 5 \).

The separation of the crossover between these two regimes increases as \(q \) and \(n_s \) increase. For the standard choice of parameters as \(n_s = 1 \) and \(q = 2(p + 2) \), the crossover occurs around \(r = 4 \) for \(p = 1 \); this means that the \(O(N) \) scheme gives the equivalent solution to the \(O(N^2) \) scheme for relatively dense configurations where the minimum separation of particles is smaller than \(r = 4 \). On the other hand, the \(O(N) \) scheme gives less accurate solution than the \(O(N^2) \) scheme for dilute configurations, because the \(O(N^2) \) scheme becomes very accurate there.

We note that the expansion in §2 is conceptually different from the expansion in the FMM. In (2.42) we take into account \(K^{(n,m)} \) for \(n \leq p + 2 \) and \(m \leq p + 2 \), that is, up to \(K^{(p+2,p+2)} \). This is because the resultant mobility problem (2.40) must be well-defined.

4. Results

We utilise the \(O(N^2) \) and the \(O(N) \) schemes in practice and check the performance. The calculations are done by a personal computer running the FreeBSD operating system.
on dual Pentium III processors of 550MHz with 1GB memory. The programs are compiled by the GNU C compiler optimised for Pentium processors.

4.1. Benchmarks

At the beginning, we do not solve the physical problems such as mobility problems (2.51) or resistance problems (2.53), but calculate (2.40) giving all elements of force moments. Figure 7 shows the CPU times on the calculation for $p = 1$. The result denoted by $O(N^2)$ uses the six-step iterative procedure in §2.4, and the results denoted by $O(N)$ use the five-step FMM procedure with equations from (3.9) to (3.12) for the step (ii) of the iterative procedure. We see that the CPU time of the $O(N^2)$ scheme is scaled by N^2. The result denoted by ‘FTS’ is the calculation with the explicit form of the mobility matrix shown in Durlofsky et al. (1987). The generalisation of the truncation p in the $O(N^2)$ scheme makes an extra cost. The reason for the N^2 scaling on the ‘FTS’ scheme is that we did not solve the physical problems nor we did not invert the matrix. For $O(N)$ schemes with a fixed l_m, we see two regions where the CPU time is almost constant with N and where it is almost scaled by N^2. The crossover occurs where the direct particle-to-particle calculation in the step (v) for near cells with an $O(N^2)$ cost dominates the
calculation for cells with an $O(N^0)$ cost. As suggested in §3.2.2, we need to divide the system into finer cells for larger N in the way of (3.15). In fact, figure 7 shows that the crossover of CPU times for l_m's occurs around $N \approx 10^2$, and the envelope line for $O(N)$ schemes is almost scaled by N. A similar behaviour is also observed for higher versions ($p > 1$).

4.2. Physical problems

Next, we consider physical problems. Figure 8 shows the average sedimentation velocities for particles placed on a simple cubic lattice with a lattice spacing $r = 3$ with a constant force applied. In the calculations, the truncation on the FMM is $q = 2(p + 2)$ and the number of spacing cells is $n_s = 1$. The velocities are all proportional to $N^{2/3}$; if the conglomerate of particles are equivalent to a single object with the same size, the sedimentation velocity would be the ratio of the applied force scaled by N to the drag coefficient scaled by the linear dimension of the object $N^{1/3}$. The differences between the $O(N)$ and $O(N^2)$ schemes for each p are the same order of the error on the $O(N^2)$ scheme.

In these physical problems, we need to solve the linear set of equations. By the iterative method, the total calculating cost is proportional to the number of iterations n_i. For any
Improvement of the Stokesian Dynamics

Figure 9. Residuals in GPBi-CG method for $N = 200$. 'Mob' and 'Res' denote the mobility and the resistance problems, and 'SC' and 'RD' denote a simple cubic lattice and random configuration respectively.

Problem, we need n_r times as much CPU time as a single calculation of (2.40) shown in figure 7, because all mobility, resistance, and mixed problems consist of (2.40) as the core calculation. To observe the convergent behaviour during the iterations, we calculate mobility and resistance problems for a simple cubic lattice and a random configuration with separations $r = 3.0$ and 2.2. The random configurations are obtained by an uniform random distribution in the cubic region with the length $rN^{1/3}$ excluding the overlaps. Figure 9 shows the residual with the number of iterations in the GPBi-CG method for $N = 200$. The convergence on mobility problems are much faster than that on resistance problems. Table 2 shows the numbers of iterations for the accuracy 10^{-6}. For mobility problems, the number of iterations is independent of N and the problems are solved with an $O(N)$ cost. On the other hand, for resistance problems, more iterations are necessary for larger N. Figure 10 shows the numbers of iterations on resistance problems. For high accuracy $\epsilon = 10^{-6}$ the number of iterations almost increases as $N^{1/2}$, and for low accuracy $\epsilon = 10^{-3}$ it increases like $\log N$ (or, at least, slower than $N^{1/2}$). Therefore, the total cost of the calculation for resistance problems would be $O(N^{3/2})$.
Table 2. Numbers of iterations for mobility and resistance problems of simple cubic and random configurations with separations $r = 3.0$ and 2.2 in FMM code with $p = 1$, $q = 6$, and $n_\lambda = 1$ by the GPBI-CG method under the accuracy $\epsilon = 10^{-6}$. (Blank entries are not calculated.)

<table>
<thead>
<tr>
<th>Problem Configuration: Mobility</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation r:</td>
<td>Simple Cubic</td>
</tr>
<tr>
<td>$N = 4$</td>
<td>3</td>
</tr>
<tr>
<td>$N = 8$</td>
<td>3</td>
</tr>
<tr>
<td>$N = 10$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 20$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 40$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 80$</td>
<td>6</td>
</tr>
<tr>
<td>$N = 100$</td>
<td>6</td>
</tr>
<tr>
<td>$N = 200$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 400$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 800$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 1,000$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 2,000$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 4,000$</td>
<td>5</td>
</tr>
<tr>
<td>$N = 8,000$</td>
<td>5</td>
</tr>
</tbody>
</table>

5. Conclusions

In this paper, we have shown the formulation of the hydrodynamic interactions for rigid spherical particles in an unbounded fluid under the Stokes approximation by the multipole expansion in real space. We have derived the generalised mobility problem which relates the force moments to the velocity moments with arbitrary orders. In our formulation, we calculate the velocity moments through the velocity derivatives. The Faxén’s law was used in the original Stokesian Dynamics method and is one of the reason of the limitation at the FTS version which is equivalent to the truncation at the first order in our formulation. We do not utilise the Faxén’s law explicitly. However, the present formulation contains it implicitly: we integrate the disturbance field of the fluid velocity on the surface of particles for velocity moments, and Batchelor (1972) did the same in the classical derivation of the Faxén’s law. To get well-defined problems, the proper reduction of force and velocity moments is essential; the reduction would be another barrier of the extension of the original Stokesian Dynamics method. To overcome the barrier, we formulate the scheme not directly with the physical variables such as forces, torques, stresslets, translational and rotational velocities, and rate-of-strains, but with the mathematical variables such as force moments and velocity moments. Because of the systematic formulation with the proper reduction, there is no barrier at the FTS, and extensions to higher orders are straightforward. By this formulation, one of the difficulties in the original Stokesian Dynamics method have been overcome and the results have been shown with the order up to $p = 7$ explicitly.

We have also shown the improvement of the calculating speed which is the other difficulty in the original Stokesian Dynamics method. By the application of an iterative method to solve the linear set of equations, we have formulated the $O(N^2)$ scheme. Because we calculate the velocity moments through the velocity derivatives, we can formulate the fast multipole method (FMM) in a simple way as a natural extension of the conventional multipole expansion. We have shown the $O(N)$ scheme by the non-adaptive FMM. Our formulation of the FMM has no harmonics nor trigonometric functions; this is
Improvement of the Stokesian Dynamics

Figure 10. Numbers of iterations on resistance problems for simple cubic lattices with $r = 3.0$ and 2.2 under the accuracies $\epsilon = 10^{-3}$ and 10^{-6}. The broken line shows $N^{1/2}$ as a reference.

The difference (and would be the advantage) from the original formulations by Greengard & Rokhlin (1987) and the application for Stokes flows by Sangani & Mo (1996).

The performance of these schemes has been tested for a single calculation of the generalised mobility problem which appears in each iteration to solve the mobility and resistance problems. The CPU time on this calculation is either $O(N^2)$ or $O(N)$ where we choose the levels of the non-adaptive cell structure as $\log N$. The real problems have been calculated by these schemes for particles $N = 400,000$ at most. We have found that mobility problems need small and constant iterations and the total calculating costs are $O(N)$. On the other hand, resistance problems need more iterations and total calculating costs seem to be scaled by $N^{3/2}$ with a high accuracy $\epsilon = 10^{-6}$; by the $O(N^2)$ scheme there, the total cost would be $O(N^{5/2})$ and the original Stokesian Dynamics method needs the cost of $O(N^3)$. It should be noted that we did not apply any preconditioning techniques on the iterative method and that would be helpful for this situation.

By the $O(N)$ scheme, we can examine the detailed hydrodynamic interaction for a huge agglomerate of particles in a fluid. Fortunately, many interesting phenomena such as breakups of falling clusters by Nitsche & Batchelor (1997) and those by shear flows by Kao & Mason (1973) are mobility problems, and the plain $O(N)$ scheme is sufficient.

We avoid discussing the lubrication correction in this paper because of lack of the
theoretical justifications. Recently, Cichocki et al. (1999) showed some failure of the original lubrication correction on the three-body problems and gave modification without theoretical justifications. The present scheme with higher moments would give the correct interactions not only for two particles but also for three and more particles, and could give the theoretical background and the correct treatments.

The adaptive version of the FMM was also not discussed in this paper. However, this would be important for practical studies of the dynamics, because we usually observe the structures or patterns in the systems and, the non-adaptive FMM hardly handles such situations with a good performance.

The current scheme would be easily applicable for other problems; for the problems with rigid but non spherical objects, we need to construct proper moment-reduction procedures for the geometries, for non rigid objects, we need to include the double layer potential in the integral equation (2.1), and for the systems under the periodic boundary condition, we need to replace the Green function from the Oseen tensor to the tensor with the Ewald summation (Beenakker 1986 and Brady et al. 1988). In addition to these hydrodynamic problems, we could extend this formulation in a straightforward way to the problems governed by linear equations such as Laplace problems, linear elastic problems, gravitational systems, and vortex dynamics.

The author wish to thank Professor John F. Brady for guiding him to this work and helpful discussions and comments on the manuscript. This work was supported by the Japan Society for the Promotion of Science.

Appendix A. Explicit form of the self-part of mobility matrix

We discuss the properties of the self-part of the generalised mobility matrix defined by (2.22). First we prove two properties discussed in §2.2:

(i) \(\mathcal{M}^{(n,m)} \) is non-zero only when \(n \) and \(m \) are both odd or both even.

(ii) \(\mathcal{M}^{(n,m)} \) is zero for \(m \geq n + 2 \).

The derivatives of Oseen tensor \(J^{(m)} \) has the scalar part proportional to \(1/r^{m+1} \) and the tensor part which is linear combination of \(\hat{r}^n \) with \(n = m + 2, m, m - 2, \cdots, 1 \) or 0. The surface integral of unit tensor \(\hat{r}^n \) has the following non-zero value

\[
\frac{1}{4\pi} \int_{|\hat{r}|=1} dS(\hat{r}) \, \hat{r}^n_{k...} = \frac{(n_x - 1)!(n_y - 1)!(n_z - 1)!!}{(n + 1)!!} \quad (A1)
\]

only if \(n, n_x, n_y, \) and \(n_z \) are all even where \(n_x, n_y, n_z \) are the number of indices of \(x, y, \) and \(z \) in \(k \cdots \) respectively. This is a simple extension of Kronecker’s delta for higher rank. In fact,

\[
\frac{1}{4\pi} \int_{|\hat{r}|=1} dS(\hat{r}) \, \hat{r}_i \hat{r}_j = \frac{1}{3!!} \delta_{ij} \quad (A2)
\]

\[
\frac{1}{4\pi} \int_{|\hat{r}|=1} dS(\hat{r}) \, \hat{r}_i \hat{r}_j \hat{r}_k \hat{r}_l = \frac{1}{5!!} (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \quad (A3)
\]

From these properties, it is found that \(\mathcal{M}^{(n,m)} \) becomes zero if \(m \) is odd and \(n \) is even or vice versa; the property (i) has been proven.

The Oseen tensor \(J_{ij} \) defined by (2.2) has the following properties:

\[
\nabla_i J_{ij} = 0, \quad (A4)
\]

\[
\nabla^2 J_{ij} = 0, \quad (A5)
\]
and

$$\nabla^2 \nabla^2 J_{ij} = 0. \quad (A6)$$

Let us consider the property (ii) on $\mathcal{M}^{s(n,m)}$ with $m \geq n + 2$. From the properties used to prove the property (i), all indices on $\mathcal{M}^{s(n,m)}$ must match each other. We could think three cases on the matching: i and j are matched, i or j is matched with one of $k \cdots$, and i and j are both matched with $l \cdots$. In the first case, Laplacian ∇^2 would appear from the matching among $k \cdots$, and the matrix becomes zero by (A5). In the second case, the matrix also becomes zero by (A4). In the third case, there are at least four indices in $k \cdots$ to match each other; therefore, the operator $\nabla^2 \nabla^2$ would appear and the matrix again becomes zero by (A6). Because the possible indices are one of the above three cases, $\mathcal{M}^{s(n,m)}$ with $m \geq n + 2$ are always zero; the property (ii) has been proven.

As a result, the self-part of the mobility matrix would have the following form

$$\mathcal{M}^s = \begin{bmatrix}
\mathcal{M}^{s(0,0)} & 0 & 0 & 0 & \cdots \\
0 & \mathcal{M}^{s(1,1)} & 0 & 0 & \cdots \\
\mathcal{M}^{s(2,0)} & 0 & \mathcal{M}^{s(2,2)} & 0 & \cdots \\
0 & \mathcal{M}^{s(3,1)} & 0 & \mathcal{M}^{s(3,3)} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}. \quad (A7)$$

The explicit form of $\mathcal{M}^{s(0,0)}$ and $\mathcal{M}^{s(1,1)}$ are given by (2.23) and (2.24) respectively.

Appendix B. Explicit form of reduction- and recovery-operators

We show explicit form of \mathcal{P} and \mathcal{Q} up to the third order. While we use the force moments in the following, the results are also applicable for the velocity moments.

B.1. Reduction-operator \mathcal{P}

From the properties of \mathcal{P}, the operator is decomposed into small parts as

$$\begin{bmatrix}
\mathcal{F}^{(0)} \\
\mathcal{F}^{(1)} \\
\mathcal{F}^{(2)} \\
\mathcal{F}^{(3)}
\end{bmatrix} = \begin{bmatrix}
\mathcal{P}^{(0,0)} & 0 & 0 & 0 & \cdots \\
0 & \mathcal{P}^{(1,1)} & 0 & 0 & \cdots \\
\mathcal{P}^{(2,0)} & 0 & \mathcal{P}^{(2,2)} & 0 & \cdots \\
0 & \mathcal{P}^{(3,1)} & 0 & \mathcal{P}^{(3,3)} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix} \cdot \begin{bmatrix}
\mathcal{F}^{(0)} \\
\mathcal{F}^{(1)} \\
\mathcal{F}^{(2)} \\
\mathcal{F}^{(3)}
\end{bmatrix}. \quad (B1)$$

To write down the explicit forms of the small matrices, we use symmetric form for \mathcal{F} for simplicity. Only $\mathcal{P}^{(1,1)}$ of the small matrices in (B1) has non-diagonal elements which relate $\mathcal{F}_{i,k \cdots}$ with different i's. Thus we write $\mathcal{P}^{(1,1)}$ first. The explicit form of $\mathcal{P}^{(1,1)}$ is
given as

\[
\begin{bmatrix}
\mathcal{F}^{(1)}_{x,y} \\
\mathcal{F}^{(1)}_{x,z}
\end{bmatrix}
= P^{(1,1)} \cdot \mathcal{F}^{(1)} =
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{3} & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(1)}_{x,x} \\
\mathcal{F}^{(1)}_{x,y} \\
\mathcal{F}^{(1)}_{x,z}
\end{bmatrix}
\]

\begin{equation}
(B2)
\end{equation}

Because the other matrices are essentially independent of the indices \(i\) of \(\mathcal{F}_{k,\ldots}\), we write matrices only for \(\mathcal{F}_{x,\ldots}\). The diagonal matrices \(P^{(m,m)}\) are just the extraction of the independent elements from \(\mathcal{F}\)'s. The explicit forms are given as

\[
P^{(0,0)}_{x,x} = 1,
\]

\begin{equation}
(B3)
\end{equation}

\[
\begin{bmatrix}
\mathcal{F}^{(2)}_{x,y} \\
\mathcal{F}^{(2)}_{x,z}
\end{bmatrix}
= P^{(2,2)} \cdot \mathcal{F}^{(2)} =
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(2)}_{x,x} \\
\mathcal{F}^{(2)}_{x,y} \\
\mathcal{F}^{(2)}_{x,z}
\end{bmatrix}
\]

\begin{equation}
(B4)
\end{equation}

and

\[
\begin{bmatrix}
\mathcal{F}^{(3)}_{x,y} \\
\mathcal{F}^{(3)}_{x,z} \\
\mathcal{F}^{(3)}_{x,yy} \\
\mathcal{F}^{(3)}_{x,yz}
\end{bmatrix}
= P^{(3,3)} \cdot \mathcal{F}^{(3)} =
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(3)}_{x,x} \\
\mathcal{F}^{(3)}_{x,y} \\
\mathcal{F}^{(3)}_{x,z} \\
\mathcal{F}^{(3)}_{x,yy} \\
\mathcal{F}^{(3)}_{x,yz}
\end{bmatrix}
\]

\begin{equation}
(B5)
\end{equation}

The off-diagonal matrices showing the subtraction of the traces appear only in the lower-
half part in (B.1). The explicit forms are given as

\[
\begin{bmatrix}
\dot{\mathcal{F}}^{(2)}_{x,y} \\
\dot{\mathcal{F}}^{(2)}_{x,z}
\end{bmatrix}
= \mathcal{P}^{(2,0)}_{x,x} \cdot \mathcal{F}^{(0)}_{x} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\cdot \mathcal{F}^{(0)}_{x},
\]

(B6)

and

\[
\begin{bmatrix}
\dot{\mathcal{F}}^{(3)}_{x,yy} \\
\dot{\mathcal{F}}^{(3)}_{x,yz} \\
\dot{\mathcal{F}}^{(3)}_{x,zz}
\end{bmatrix}
= \mathcal{P}^{(3,1)}_{x,x} \cdot \mathcal{F}^{(1)}_{x} =
\begin{bmatrix}
-1/5 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1/5
\end{bmatrix}
\cdot \begin{bmatrix}
\mathcal{F}^{(1)}_{x,y} \\
\mathcal{F}^{(1)}_{x,z}
\end{bmatrix}.
\]

(B7)

B.2. Recovery-operator \(\mathcal{Q} \)

The recovery-operator \(\mathcal{Q} \) is also decomposed as

\[
\begin{bmatrix}
\mathcal{F}^{(0)} \\
\mathcal{F}^{(1)} \\
\mathcal{F}^{(2)} \\
\vdots
\end{bmatrix}
= \begin{bmatrix}
\mathcal{Q}^{(0,0)} & 0 & 0 & 0 & \cdots \\
0 & \mathcal{Q}^{(1,1)} & 0 & 0 & \cdots \\
0 & 0 & \mathcal{Q}^{(2,2)} & 0 & \cdots \\
0 & 0 & 0 & \mathcal{Q}^{(3,3)} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\cdot \begin{bmatrix}
\dot{\mathcal{F}}^{(0)} \\
\dot{\mathcal{F}}^{(1)} \\
\dot{\mathcal{F}}^{(2)} \\
\vdots
\end{bmatrix}.
\]

(B8)

As for \(\mathcal{P} \), we see \(\mathcal{Q}^{(1,1)} \) first. The explicit form is given as

\[
\begin{bmatrix}
\mathcal{F}^{(1)}_{x,x} \\
\mathcal{F}^{(1)}_{x,y} \\
\mathcal{F}^{(1)}_{x,z}
\end{bmatrix}
= \mathcal{Q}^{(1,1)} \cdot \mathcal{F}^{(1)} =
\begin{bmatrix}
0 & 0 & -1 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\cdot \begin{bmatrix}
\dot{\mathcal{F}}^{(1)}_{x,x} \\
\dot{\mathcal{F}}^{(1)}_{x,y} \\
\dot{\mathcal{F}}^{(1)}_{x,z}
\end{bmatrix}.
\]

(B9)

The diagonal matrices \(\mathcal{Q}^{(m,m)} \) are given as

\[
\mathcal{Q}^{(0,0)} = 1,
\]

(B10)
\[
\begin{bmatrix}
\mathcal{F}^{(2)}_{x,xx} \\
\mathcal{F}^{(2)}_{x,xy} \\
\mathcal{F}^{(2)}_{x,xz}
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(2)}_{x,xx} \\
\mathcal{F}^{(2)}_{x,xy} \\
\mathcal{F}^{(2)}_{x,xz}
\end{bmatrix}
= Q^{(2,2)}_{x,x} \cdot \mathcal{F}^{(2)}_x =
\begin{bmatrix}
0 & 0 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(2)}_{x,xy} \\
\mathcal{F}^{(2)}_{x,xz}
\end{bmatrix}
\]

\((B11) \)

and

\[
\begin{bmatrix}
\mathcal{F}^{(3)}_{x,xxx} \\
\mathcal{F}^{(3)}_{x,xyy} \\
\mathcal{F}^{(3)}_{x,xzz}
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(3)}_{x,xxx} \\
\mathcal{F}^{(3)}_{x,xyy} \\
\mathcal{F}^{(3)}_{x,xzz}
\end{bmatrix}
= Q^{(3,3)}_{x,x} \cdot \mathcal{F}^{(3)}_x =
\begin{bmatrix}
-1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(3)}_{x,xyy} \\
\mathcal{F}^{(3)}_{x,xzz}
\end{bmatrix}
\]

\((B12) \)

The off-diagonal matrices are given as

\[
\begin{bmatrix}
\mathcal{F}^{(2)}_{x,xx} \\
\mathcal{F}^{(2)}_{x,xy} \\
\mathcal{F}^{(2)}_{x,xz}
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(2)}_{x,xx} \\
\mathcal{F}^{(2)}_{x,xy} \\
\mathcal{F}^{(2)}_{x,xz}
\end{bmatrix}
= Q^{(2,0)}_{x,x} \cdot \mathcal{F}^{(0)}_x =
\begin{bmatrix}
1/3 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
\mathcal{F}^{(0)}_{x,xy} \\
\mathcal{F}^{(0)}_{x,xz}
\end{bmatrix}
\]

\((B13) \)
and

\[
\begin{bmatrix}
 f^{(3)}_{xx,xx} \\
 f^{(3)}_{xx,xy} \\
 f^{(3)}_{xx,xz} \\
 f^{(3)}_{xy,yy} \\
 f^{(3)}_{xy,yz} \\
 f^{(3)}_{xz,xz} \\
 f^{(3)}_{yz,yz} \\
 f^{(3)}_{zz,zz}
\end{bmatrix}
= Q^{(3,1)} \cdot \tilde{F}^{(1)}_{x} =
\begin{bmatrix}
 3/5 & 0 & 0 \\
 0 & 1/5 & 0 \\
 0 & 0 & 1/5
\end{bmatrix}
\begin{bmatrix}
 f^{(1)}_{xx} \\
 f^{(1)}_{xy} \\
 f^{(1)}_{xz} \\
 f^{(1)}_{yz} \\
 f^{(1)}_{yy} \\
 f^{(1)}_{xz} \\
 f^{(1)}_{yz} \\
 f^{(1)}_{yy}
\end{bmatrix},
\]

(B14)

where \(\tilde{F}^{(1)}_{xx} = f^{(1)}_{xx} - f^{(1)}_{xy} \) for simplicity.

Appendix C. General remarks on iterative method

We usually meet the situation for a linear set of equations (3.1) where some elements of the left-hand-side vector \(b \) is unknown and some elements of a vector in the right-hand side \(x \) is given. To clarify the situation, we explicitly write the equation as

\[
\begin{bmatrix}
 b \\
 c
\end{bmatrix} = A \cdot \begin{bmatrix}
 x \\
 y
\end{bmatrix},
\]

(C1)

where \(b \) and \(y \) are given and \(x \) and \(c \) are unknown. The dimensions of \(x \) and \(b \) and those of \(y \) and \(c \) are the same respectively. We can always transform (C1) in the form of (3.1), that is, moving the given variables to the left-hand side and the unknown variables to the right-hand side as

\[
\begin{bmatrix}
 b \\
 0
\end{bmatrix} - A \cdot \begin{bmatrix}
 0 \\
 y
\end{bmatrix} = - \begin{bmatrix}
 0 \\
 c
\end{bmatrix} + A \cdot \begin{bmatrix}
 x \\
 0
\end{bmatrix}.
\]

(C2)

To solve this problem, first calculate the left-hand-side vector with the dot-product calculation once, then call the routine of an iterative method with the subroutine to calculate the right-hand side from the input vector \(\cdot \cdot ^{T}(c,x) \) which would be constructed by the subroutine to calculate \(A \cdot \cdot ^{T}(c,y) \) giving \(y = 0 \) explicitly.

For the generalised linear set of equations which we meet in the original Stokesian Dynamics method with the lubrication correction, the above treatment is also applicable. Let us consider the problem where matrices appear in both sides of the equation as

\[
B \cdot \begin{bmatrix}
 b \\
 c
\end{bmatrix} = A \cdot \begin{bmatrix}
 x \\
 y
\end{bmatrix},
\]

(C3)

where \(b \) and \(y \) are given and \(x \) and \(c \) are unknown as same in (C1). Again we can transform (C3) as

\[
B \cdot \begin{bmatrix}
 b \\
 0
\end{bmatrix} - A \cdot \begin{bmatrix}
 0 \\
 y
\end{bmatrix} = -B \cdot \begin{bmatrix}
 0 \\
 c
\end{bmatrix} + A \cdot \begin{bmatrix}
 x \\
 0
\end{bmatrix}.
\]

(C4)

This is the same form of (3.1); the left-hand side consists of the given values only and
the right-hand side can be summarised as the matrix-vector product with the unknown vector. Although the operation of the dot-product increases, the generalised linear set of equations is also solved without decomposing the matrices A and B.

Appendix D. The explicit form of shift operators

D.1. Force moments

We describe the transformations of the origin of moments. We would like to represent the moments with the origin \(x_1 \) by \(F(x_1) \). From the definition, the moments with \(x_2 \) is given by

\[
F_{i,j}^{(m)}(x_2) = \int dS(y) \ (y - x_2)^m f_i(y).
\]

(D1)

Here \((y - x_2)^m \) could be written by the linear combination of \((y - x_1)^i \) and \((x_1 - x_2)^j \) where \(i + j = m \). By the ‘binomial theorem for 3-dimensional vectors’, we are able to transform \(F(x_1) \) to \(F(x_2) \) uniquely. The point of the binomial theorem for vectors is their non-commutative property,

\[
a^i b^j \neq b^i a^j.
\]

(D2)

Let us consider the expansion

\[
[(a + b)^n]_{k...}.
\]

(D3)

If we know the \(n \)-indices “\(k \cdots \)”, that is, the number of \(x \), \(y \), and \(z \) are \(n_x \), \(n_y \), and \(n_z \) respectively where \(n_x + n_y + n_z = n \), using the usual (scalar) binomial theorem

\[
(a + b)^n = \sum_{i=0}^{n} n^i a^i b^{n-i},
\]

we obtain the expansion as

\[
[(a + b)^n]_{k...} = \sum_{i_x=0}^{n_x} \sum_{i_y=0}^{n_y} \sum_{i_z=0}^{n_z} n_x C_{i_x} n_y C_{i_y} n_z C_{i_z} \ (a_x)^{i_x} \ (a_y)^{i_y} \ (a_z)^{i_z} \ (b_x)^{j_x} \ (b_y)^{j_y} \ (b_z)^{j_z},
\]

(D5)

where \(j_x = n_x - i_x \), \(j_y = n_y - i_y \), and \(j_z = n_z - i_z \) respectively. The expansion of the power of the sum of two vectors \(a \) and \(b \) is straightforward. We just write down explicitly for lower powers:

\[
F_i^{(0)}(x_2) = F_i^{(0)}(x_1)
\]

(D6)

\[
F_i^{(1)}(x_2) = r_j F_i^{(0)}(x_1) + F_{i,j}^{(1)}(x_1)
\]

(D7)

\[
F_{i,j,k}^{(2)}(x_2) = r_{jk} F_i^{(0)}(x_1) + r_j F_{i,k}^{(1)}(x_1) + r_k F_{i,j}^{(1)}(x_1) + F_{i,j,k}^{(2)}(x_1),
\]

(D8)

where \(r = x_2 - x_1 \). If the order of \(F(x_1) \) and \(F(x_2) \) is the same, they are equivalent, that is, \(F(x_2) \) calculated by the definition and by the transformation above are identical.

We denote this transformation by a matrix \(S_F \) as

\[
F(x_2) = S_F(x_2, x_1) \cdot F(x_1).
\]

(D9)

The explicit form of the transformation matrix \(S \) for vector \((F_i^{(0)}, F_i^{(1)}, F_i^{(1)}, F_i^{(1)}) \) is
written as

\[S_F(x_2, x_1) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ A_x & 1 & 0 & 0 \\ A_y & 0 & 1 & 0 \\ A_z & 0 & 0 & 1 \end{bmatrix}, \]

(D10)

where

\[A_x = \begin{bmatrix} r_x & 0 & 0 \\ r_y & 0 & 0 \\ r_z & 0 & 0 \end{bmatrix}, \quad A_y = \begin{bmatrix} 0 & r_x & 0 \\ 0 & r_y & 0 \\ 0 & r_z & 0 \end{bmatrix}, \quad A_z = \begin{bmatrix} 0 & 0 & r_x \\ 0 & 0 & r_y \\ 0 & 0 & r_z \end{bmatrix}, \]

(D11)

where \(r = x_2 - x_1 \).

D.2. Velocity derivatives

We describe the transformation of the origin of velocity derivatives. By the definition

\[\mathcal{V}_{i,k}^{(m)}(x_1) = \frac{1}{m!} [\nabla_{k^m} v_i](x_1), \]

the velocity disturbance at \(x \) around \(x_1 \) is given by

\[v_i(x) = \sum_{m=0} v_{i,k}^{(m)}(x_1) (x - x_1)^m. \]

From the above equation, we get the transformation among the velocity derivatives as

\[\mathcal{V}_{i,j,..}^{(n)}(x_2) = \sum_{m=n} m C_n \mathcal{V}_{i,k,..}^{(m)}(x_1) (x_2 - x_1)^m, \]

(D14)

or, introducing the operator \(\mathcal{S}_V \), as

\[\mathcal{V}(x_2) = \mathcal{S}_V(x_2, x_1) \cdot \mathcal{V}(x_1). \]

(D15)

The explicit form of \(\mathcal{S}_V \) is given by

\[\begin{bmatrix} \mathcal{V}^{(0)} \\ \mathcal{V}^{(1)} \\ \mathcal{V}^{(2)} \\ \vdots \end{bmatrix}(x_2) = \begin{bmatrix} 1 & r & 2rr & 3rrr & \cdots \\ 0 & 1 & 2r & 3rr & \cdots \\ 0 & 0 & 1 & 3r & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \mathcal{V}^{(0)} \\ \mathcal{V}^{(1)} \\ \mathcal{V}^{(2)} \\ \vdots \end{bmatrix}(x_1), \]

(D16)

where \(r = x_2 - x_1 \), and \(\mathcal{O}^{(n)} \) denotes the \(n \)-fold contraction such as

\[\left(A \mathcal{O}^{(2)} B \right)_{k,..} = A_{ij} B_{ij}, \]

(D17)

REFERENCES

