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It has recently been shown that the average stress in a viscous suspension consists of a symmetric
traceless component, and an antisymmetric component expressed in terms of a polar and an axial
vector. In this paper, closure relations for these quantities are derived by means of numerical
ensemble averaging following a systematic procedure. By the use of a suitably biased probability
distribution, the ensemble is made to describe a spatially non-uniform system. Several new terms,
which are identically zero for a homogeneous system, are identified. Some interesting artifacts arising
from the use of a repeated fundamental cell with the associated artificial periodicity are described.

I. INTRODUCTION

The central problem in the modeling of disperse multi-
phase flows by means of averaged equations is the closure
of the terms which arise from the averaging procedure ap-
plied to the exact microscopic equations (see e.g. Refs.
1–4). Such closure requires that part of the information
lost upon averaging be reintroduced to a degree of ap-
proximation sufficient to capture the physics and result
in a well-posed mathematical model.

The problem has been recognized for a long time and
many attempts at its solution can be found in the litera-
ture. A representative list may include the early paper by
Anderson and Jackson5 dealing with the formulation of a
closed model for fluidized beds, the more recent work on
the same topic described by Sundaresan6, work by Koch,
Sangani and collaborators devoted to gas-solid suspen-
sions and bubbly liquids (see e.g. Refs. 7–11), the stud-
ies by Brady and co-workers on suspension rheology (see
e.g. Refs. 12–15), and many others. While the ultimate
goal of a general model capable of describing a variety of
flow situations is still distant, considerable progress has
been achieved by coupling analysis with the detailed com-
putational simulation of flows with suspended particles.
With few exceptions (see e.g. Refs. 16,17), most of the
work has focused on the limit cases of potential flow (see
e.g. Refs. 18–21) and Stokes flow (see e.g. Refs. 22–25),
which seem to be the most amenable to the development
of a closed model. While idealized, there is hope that the
insight gained on these systems might shed useful light
for the solution of the problem at intermediate Reynolds
numbers.

In some recent papers26–28 we have considered this
problem, again in the Stokes flow limit, pointing out
that the information obtainable from the simulation of
spatially uniform systems can reflect only partially the
full structure of the averaged equations. For example, in
a uniform sheared suspension, on average the particles
move with the same velocity as the mixture, which does
not permit to see the effect of any closure term propor-
tional to the relative velocity of two. Similarly, it is im-
possible to test the applicability of an effective viscosity

calculated from the shear problem to a different flow situ-
ation, such as sedimentation, if spatial uniformity causes
all spatial gradients to vanish.

To be sure, different flows give rise to different mi-
crostructures, which will then have an impact on the ef-
fective properties and closure relations (see e.g. Ref. 13).
For this reason, the pursuit of a single closed system of
averaged equations applicable to many different flow sit-
uations may be to some extent futile if a high degree of
fidelity is pursued. However, one may look at the general
class of problems from another angle. The development
of closure relations which, while perhaps not exactly valid
for any flow, still manage to capture in some generic sense
several important features of many flows, might be a per-
haps less ambitious but ultimately, in practice, a more
fruitful goal.

It is such a goal which we pursue in this paper and
the ones to follow, in which we use spatially periodic en-
sembles of hard spheres in a cubic fundamental cell to
derive in a systematic way closure relations for suspen-
sions of equal spheres in Stokes flow. A distinct fea-
ture of our approach is the ability to build into this
ensemble (by post-processing, as it were) a prescribed
spatial non-uniformity in the particle number density
distribution.29,30 In this way, we are able to discern at
least some of the effects of non-uniformity alluded to be-
fore. One major such effect is the appearance of an an-
tisymmetric component of the stress tensor, entirely due
to spatial non-uniformity, even in the absence of couples
acting on the particles.

The present paper is devoted to the derivation of a
closure relation for the particle stress in the suspension.
Future papers will deal with the inter-phase force.

The logic to be followed in these studies is in principle
straightforward. Once the fundamental variables of the
theory are chosen, considerations of Galilean invariance,
parity, linearity, and equipresence dictate the most gen-
eral form for each closure relation. The quantity to be
closed – for example the stress – is calculated directly
from its definition by means of numerical ensemble aver-
aging, and so are the quantities appearing in its closure,
such as the average rate of strain. Matching the two
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requires the introduction of volume-fraction-dependent
coefficients – e.g., the effective viscosity – the value of
which follows from the direct numerical simulations.

A large fraction of the contemporary work on suspen-
sion theory has focused on non-Newtonian rheological
properties (see e.g. Refs. 14,31). A great deal of atten-
tion has been paid to the anisotropy of the pair distri-
bution function, assuming a spatially homogeneous par-
ticle number density. In the present paper we adopt a
complementary viewpoint, focusing on non-uniformities
of the particle number density while disregarding the
anisotropy of the pair distribution function. We be-
lieve that our techniques can be extended to deal with
the complete problem in which both the particle num-
ber density is non-uniform and pair distribution function
anisotropic. We will pursue this extension in future work.

II. THE PARTICLE STRESS

We will use as our starting point an expression for the
particle stress developed in Ref. 32. That work consid-
ered a system of N equal spheres suspended in a fluid in
a cubic domain, subjected to periodicity boundary con-
ditions. A closed form expression was obtained for the
mean mixture volumetric flux um and mixture pressure
pm in terms of ensemble averages of multipole coefficients
appearing in Lamb’s general solution for the Stokes flow
past a sphere33–35. The situations considered was fairly
general and, in particular, did not assume a spatial ho-
mogeneity of the ensemble used to calculate the aver-
age. Upon calculating the gradient of pm and the Lapla-
cian of um, the following result was found (Eq. (10.3) of
Ref. 32):

−∇pm + ∇2um = −µ [∇ · S + ∇ × (R − ∇ × V )]

−
1

v

∫

|r|≤a

d3r n(x + r)F (x + r) .(1)

Here S is a traceless symmetric two-tensor, R an axial
vector, V a polar vector, n the particle number density,
and F the average fluid-dynamic force on the particles,
each one with radius a and volume v = 4

3πa3. For a
pure fluid with viscosity µ, the right-hand side of this
equation would vanish (provided the force is conservative
and absorbed in the pressure pm). The terms in the right-
hand side must therefore be identified with the effect of
the particles on the momentum balance of the mixture.
Starting from the last term, in the absence of inertia,
the hydrodynamic force on each particle must balance
the applied force. In the case of gravity we therefore
have F = vρP g, with ρP the particle density and g the
acceleration of gravity, so that the last term of (1) equals
φρP g in which

φ =

∫

|r|≤a

d3r n(x + r) (2)

is the particle volume fraction. This is indeed the ex-
pected result for this situation. If we combine the term

containing um with the remaining terms, we find the di-
vergence of a stress

1

µ
Σ = 2Em + S + ε · (R − ∇ × V ) , (3)

in which ε is the alternating tensor and

Em =
1

2

[

∇um + (∇um)
†
]

, (4)

is the mixture rate-of-strain tensor. This expression ex-
plicitly shows that the stress tensor contains two anti-
symmetric contributions. It is possible to show that, for
a uniform suspension,

R =
1

µ

∮

|r|=a

dS r × [σ · n] (5)

where the overline denotes the ensemble average, σ is the
fluid stress, and n the outwardly directed unit normal at
the particle surface. For couple-free particles, this term
will therefore vanish. However, additional terms arise
in the case of spatial non-uniformities. The term V does
not seem to have been identified before. For the spatially
uniform case it can be shown to be given by36

V = −
1

µ

∮

|r|=a

dS (I − nn) · [σ · n] , (6)

in which I is the identity two-tensor, and is therefore pro-
portional to the surface-average tangential traction on
the particle surface.

As shown in Ref. 32 and summarized in the Appendix,
the exact expressions of S, R, and V involve an infinite
series of multipole coefficients, which reflect the finite size
of the particles and therefore, ultimately, the non-local
nature of an exact theory. The expressions (5) and (6)
are the first terms of the respective infinite series. In
this paper we will limit our consideration to the next
few terms, which embody a low-order non-local correc-
tion. We may also note that, to first order in the particle
volume fraction, it is possible to show that

S = 5φEm (7)

so that one recovers the well-known Einstein viscosity
correction,37 and that

R = 3φΩ∆, (8)

V =
3

10
φ u∆ +

1

7
a2

Em · ∇φ −
11

140
φa2∇2um, (9)

where u∆ = U − um is the slip translational velocity,
defined by the difference between the volumetric flux um

and the average particle translational velocity U , and
Ω∆ = Ω − (1/2)∇ × um the slip angular velocity. The
goal of this paper is to extend these dilute-limit results
to the case of finite volume fraction by carrying out nu-
merical ensemble averages.
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It may be noted that the contribution of V to the
momentum equation in the i-direction may be written
identically as

− (∇ × ∇ × V )i = ∂j

{[

1

2
(∂jVi + ∂iVj) −

1

3
δij∇ · V

]

+
1

2
(∂jVi − ∂iVj) −

2

3
δij∇ · V

}

(10)

in which one recognizes a traceless symmetric term, an
antisymmetric term, and an isotropic term. This was the
decomposition of the stress adopted in Ref. 27, a study
that was carried out before the form (1) of the stress was
developed.

III. THE SYMMETRIC PART OF THE STRESS

We assume that the contributions to the stress can be
expressed in terms of the local particle volume fraction
φ, mixture velocity um, the average inter-phase (or slip)
velocity u∆, and the average inter-phase angular velocity
Ω∆. Since S is a symmetric traceless tensor, if such a
representation is possible, it must have the form

2Em + S = 2µeEm + 2µ∆E∆ + 2µ∇E∇ + 2µΩEΩ

+a2
(

µ0∇
2
Em + µ1Em∇2φ

)

+ . . . (11)

where E∆, E∇ and EΩ are defined respectively by

E∆ =
1

2

[

∇u∆ + (∇u∆)
†
]

−
1

3
(∇ · u∆) I, (12)

E∇ =
1

2

[

u∆∇φ + (u∆∇φ)
†
]

−
1

3
(u∆ · ∇φ) I, (13)

EΩ =
1

2

{

[∇ (∇ × Ω∆)] + [∇ (∇ × Ω∆)]
†
}

, (14)

in which µe is the usual effective viscosity (normalized
by the viscosity of the suspending fluid), while the other
µ’s are additional viscosity parameters. The reason for
exhibiting the terms shown in (11) disregarding, for ex-
ample, a term proportional to ∇2E∆ and similar ones
(denoted by the dots in the equation) will be clarified
later, after Eq. (40).

We now apply to the present closure problem the
same techniques developed earlier in Refs. 26,27,29. The
method is described in detail in these references and a
brief summary will be sufficient here. We construct a
homogeneous ensemble of hard-sphere configurations by
placing N particles in a cubic box of side L and sub-
jecting them to random displacements. For each value
of the volume fraction, we construct in this way several
ensembles containing between 10 and 160 spheres, and
between 256 and 2048 configurations (see Ref. 29 for de-
tails). While a direct averaging would produce ensemble
averages corresponding to a spatially homogeneous sys-
tem, by suitably biasing the uniform-system probability,
we produce results which correspond to a non-uniform
number density distribution

n(x) = n0 (1 + ε sin k · x) (15)

in which n0 = N/L3, k is a vector with modulus 2π/L
parallel to one of the sides of the box, and ε a small pa-
rameter. As a result of this procedure all the average
quantities will consist of a constant part and a sinusoidal
(or co-sinusoidal) disturbance. The introduction of the
parameter ε enables us to identify unequivocally the lat-
ter part above the statistical noise. The use of ensembles
with a different number of particles for the same volume
fraction enables us to vary the box side L and, therefore,
k.

For each configuration of the ensemble, we subject the
particles to an equal force F0, directed parallel to the
sides of the box, and calculate the resulting linear and
angular velocity of each. We refer to this as the force
problem and we attach an index F to the quantities re-
lated to it. The results are averaged as explained before
and, for example for the case of the slip velocity, param-
eterized as

u∆(x) = [u∆]
0
F WF

+ ε sin (k · x)
(

[u∆]
‖
F W

‖
F + [u∆]

⊥
F W⊥

F

)

.(16)

Here

WF =
F0

6πµa
(17)

is the sedimentation velocity of a single isolated parti-
cle and represents the fundamental vector characterizing

this problem. The vectors W
‖
F and W⊥

F are its projec-
tion parallel and orthogonal to the non-uniformity vector
k. The coefficients of a term proportional to cos (k · x)

are found to vanish. The symbol [u∆]
0
F represents the nu-

merically calculated average sedimentation velocity cor-
responding to the uniform particle number density n0,

while [u∆]
‖
F and [u∆]

⊥
F represent the effect of the spa-

tially non-uniform part of the number density. These co-
efficients depend on both the wave vector k and the vol-
ume fraction φ. The volumetric flux um is parameterized
in a similar way, except that all the parallel coefficients
vanish due to incompressibility.

We proceed in a similar fashion subjecting each particle
to an equal couple T0, directed parallel to the sides of the
box, again calculating the resulting linear and angular
velocities (torque problem, index T ). For this problem,
the polar vector playing a role analogous to WF is

W⊥
T = ak̂ ×

T0

8πµa3
, (18)

where k̂ = k/k, with k = |k|. The parameterization of
the numerical ensemble averages is expressed similarly to

(16), but only the coefficient [u∆]
⊥
T of the cosine term is

found to be non-zero.
Finally, we write the fluid velocity as the sum of an

imposed deterministic uniform shear field u∞(x) = E∞ ·
x and a periodic disturbance due to the particles and,
again, calculate the resulting linear and angular velocity
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of each particle (shear problem, index E). In this case
there is no fundamental vector analogous to WF , but one

can define two vectors playing the role of W
‖
F and W⊥

F ,
namely

W
‖
E = a

(

k̂k̂
)

·
(

E
∞ · k̂

)

, (19)

W⊥
E = a

(

I − k̂k̂
)

·
(

E
∞ · k̂

)

, (20)

Both coefficients [u∆]
⊥
E and [u∆]

‖
E of the cosine term are

found to be non-zero.

From the representations (16) of u∆ and the analogous
ones for um for the three physical situations, one can cal-
culate the tensors appearing in the right-hand side of (11)
finding linear combinations of E∞ and the two tensors

G
⊥ = W⊥k̂ + k̂W⊥, (21)

G
‖ =

1

2

(

W ‖k̂ + k̂W ‖
)

−
1

3

(

k̂ · W ‖
)

I, (22)

where each vector W carries the appropriate index F, T ,
or E.

The symmetric stress S can also be calculated from the
results of the numerical simulations using its expression
(A.1) in terms of multipole coefficients and the results
parameterized in a similar fashion. For example, for the
shear problem, we find

S(x) = [S]0EE
∞ (23)

+ ε sin (k · x)
(

[S]EEE
∞ + [S]⊥EG

⊥
E + [S]

‖
EG

‖
E

)

,

where, again, the coefficients [S]0E , [S]EE , [S]⊥E , and [S]
‖
E

depend on both the wave vector k and the volume frac-
tion φ.

The same procedure is followed for the force and the
torque problems. In the case of the former, only the

coefficients [S]⊥F and [S]
‖
F of the cosine are non-zero while,

for the latter, only the coefficient [S]⊥T of the sine is non-
zero.

At this point, both sides of the closure relation (11)
have the form of a linear combination of the tensors E∞,
G⊥, and G‖. Upon equating the coefficients of each one

of these tensors in the two sides, we find

[S]
0
E = 2 (µe − 1) (24)

[S]
E

E = 2φ

{

dµe

dφ
−

(

1

10

dµe

dφ
+ µ1

)

(ka)2
}

, (25)

[S]
‖
E

2
= −µ∆ka[u∆]

‖
E , (26)

[S]
⊥
E = −

{

µe − 1 − (ka)2µ0

}

ka[um]⊥E − µ∆ka[u∆]⊥E

+µΩ(ka)2[Ω∆]⊥E , (27)

[S]
⊥
T = −

{

µe − 1 − (ka)2µ0

}

ka[um]⊥T − µ∆ka[u∆]⊥T

−µΩ(ka)2[Ω∆]⊥T , (28)

[S]
‖
F

2
= µ∆ka[u∆]

‖
F + µ∇φka[u∆]0F , (29)

[S]
⊥
F =

{

µe − 1 − (ka)2µ0

}

ka[um]⊥F + µ∆ka[u∆]⊥F

+µ∇φka[u∆]0F + µΩ(ka)2[Ω∆]⊥F . (30)

The second relation (25) arises from the fact that, since
φ′ = φ(1+ ε sin k ·x) (see Eq. 15), and since µe = µe(φ),
we have

µe(φ
′) = µe(φ

′) + (φ′ − φ)
dµe

dφ
. (31)
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 0  0.2  0.4  0.6  0.8  1  1.2
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] E⊥
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0.50

FIG. 1: An example of the k-dependence of the average co-
efficients appearing in Eq. (24) for [S]⊥

E
. This is the same

coefficient shown in Fig. 1 of Ref. 27. Other examples can be
found in Ref. 29.

As noted above, the use of boxes with different sides
L for the same volume fraction enables us to find the de-
pendence of the various coefficients on the wavenumber
k for a given volume fraction. A typical example for the

case of the coefficient [S]
⊥
E is shown in Fig. 1. An inter-

esting feature of these results, as well as the similar ones
for the other coefficients appearing in (33) to (35), is the
presence of stronger oscillations as the volume fraction is
increased. Some comments on this point are given later.

As in our earlier paper, Ref. 29, these and the analo-
gous numerical results for the other coefficients are then
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fitted as functions of ka as

[S]
0
E = D[S]0

E , (32)

[S]
E

E = D[S]E
E + (ka)2A[S]E

E , (33)

[S]
‖
E = 0 + (ka)2A[S]

‖
E , (34)

[S]
⊥
E = D[S]⊥

E + (ka)2A[S]⊥
E , (35)

[S]
⊥
T = D[S]⊥

T + (ka)2A[S]⊥
T , (36)

[S]
‖
F =

1

ka

(

0 + (ka)2A[S]
‖
F + (ka)3B[S]

‖
F

)

, (37)

[S]
⊥
F =

1

ka

(

D[S]⊥
F + (ka)2A[S]⊥

F + (ka)3B[S]⊥
F

)

,(38)

in which the coefficients A, B, and D are the product of
the fitting procedure. Similar fits are generated for the
k-dependence of the coefficients of um, u∆. For example,
for the force problem,

[um]
⊥
F =

1

k2

(

D[um]⊥
F + k2A[um]⊥

F + k3B[um]⊥
F

)

(39)

[u∆]
⊥
F = A[u∆]⊥

F + kB[u∆]⊥
F (40)

The other fits, from our earlier paper,29 are shown in
the Appendix. It is seen from these expressions that Em

is O(k−2) with respect to E∆, E∇, and EΩ as k → 0.
The terms shown in Eq. (11), therefore, are sufficient
to include the two leading terms in k, as k → 0, for the
three physical situations considered in this paper.

A. The effective viscosity

When the fits (32) to (38) and the similar ones for um,
u∆ are substituted into the relations (24) to (30) and
the coefficients of corresponding powers of k equated, to
leading order (i.e., to k0 for the shear problem and k−1

for force and torque problems) we find several alternative
expressions for the effective viscosity:

µe = 1 +
1

2
D[S]0

E = 1 + lim
k→0

[S]0E
2

, (41)

dµe

dφ
=

1

2φ
D[S]E

E = lim
k→0

[S]EE
2φ

, (42)

µe = 1 −
D[S]⊥

E

D[um]⊥
E

= 1 − lim
k→0

[S]⊥E
k[um]⊥E

, (43)

µe = 1 −
D[S]⊥

T

D[um]⊥
T

= 1 − lim
k→0

[S]⊥T
k[um]⊥T

, (44)

µe = 1 +
D[S]⊥

F

D[um]⊥
F

= 1 + lim
k→0

[S]⊥F
k[um]⊥F

. (45)

Consistency among these results would imply that µe is
a robust quantity which has the same value in three very
different physical situations.

An excellent consistency can indeed be observed in
Fig. 2, which shows µe calculated from the uniform part

of the shear problem (open squares, Eq. 41), and from
the non-uniform parts of the shear problem (open circles,
Eq. 43), of the torque problem (up-triangles, Eq. 44),
and of the force problem (down-triangles, Eq. 45).

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5

µ e

volume fraction φ

E0

E⊥
T⊥
F⊥

FIG. 2: µe from (41), (43), (44) and (45). Dashed and solid
lines show the dilute-limit fit (46) and the whole-range fit
(5/2)φ + Aφ2 + Bφ3.

 0

 5

 10

 15

 20

 25

 0  0.1  0.2  0.3  0.4  0.5

dµ
e/

dφ

volume fraction φ

FIG. 3: dµe/dφ from (42). The solid line is the derivative of
the whole-range fit of µe given in the text.

For φ ≤ 0.05, µe is well fitted by

µe = 1 +
5

2
φ + 5.07φ2. (46)

As mentioned before, the present calculations are done
with the assumption of an isotropic two-body correla-
tion function including multipoles up to the fifth order.
It is well known that the coefficient of the φ2 term de-
pends on the multipole truncation,38 as well as the micro-
structure, such as the anisotropy of the pair distribution
function.39 Our result 5.07 for this coefficient is consis-
tent with earlier studies, such as 5.2 by Batchelor and
Green40 with all moments, and 4.84 by Beenakker38 ob-
tained by means of a concentration expansion. Over the
whole range of φ, our numerical result for µe is well fit-
ted by µe = 1 + 2.5φ + Aφ2 + Bφ3, with A = 1.52 and
B = 22.8 as shown by the solid line in Fig. 2.

Since in our calculation we only include multipoles up
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to the fifth order without lubrication corrections, the ac-
curacy of our results decreases with increasing φ. For
example, for φ = 25% and 45%, we find µe = 2.10 and
4.5, respectively, as shown in Table I, to be compared
with (about) 2.17 and 5.6 as reported by Ladd.41

A further consistency test is offered by comparing Eq.
(42) for dµe/dφ with the derivative calculated from the
fitting as dµe/dφ = 2.5 + 2Aφ + 3Bφ2 shown in Fig. 3.
The observed consistency implies that, for weak spatial
non-uniformity (as measured by ε, cf. Eq. 15), the ef-
fective viscosity only depends on the local value of the
volume fraction.

TABLE I: Closure coefficient µe.

φ E0 E ⊥ T ⊥ F ⊥
0.01 1.02548 1.025 1.025 1.0257
0.02 1.05196 1.051 1.052 1.0522
0.03 1.07947 1.079 1.080 1.0796
0.04 1.10810 1.108 1.109 1.1078
0.05 1.13788 1.138 1.137 1.1371
0.10 1.3063 1.312 1.305 1.300
0.15 1.5145 1.53 1.505 1.496
0.20 1.773 1.79 1.76 1.742
0.25 2.098 2.12 2.07 2.05
0.30 2.505 2.52 2.47 2.44
0.35 3.021 3.0 3.0 2.94
0.40 3.673 3.7 3.7 3.55
0.45 4.50 4.5 4.6 4.3
0.50 5.51 5.4 5.4 5.3

B. Behavior of the coefficients

In principle, by applying the same matching procedure
used to obtain Eqs. (41) to (45) to the terms proportional
to higher powers of k, one should be able to determine
the additional viscosity parameters µ∆ and µ∇, and µΩ

appearing in the closure relation (11). We have however
encountered some difficulties in following this path.

In the first place, from the results of the least-squares
fitting, one may deduce that the accuracy with which
the higher-order coefficients in relations such as (33) to
(38) can be determined is lower than that of the leading
terms. One cause of this lower accuracy is the statisti-
cal error inherent in the averaging procedure. Since the
lowest-order coefficient carries the bulk of the numerical
information, this statistical error magnifies the relative
error affecting the higher-order coefficients.

Secondly, the k-dependence of the physical quantities
in general is not well understood. For example, even for
as simple a quantity as the sedimentation velocity, we
have found29 that the effect of the imposed periodicity
deriving from the use of a fundamental cell is not well
described by the existing models.

Another consequence of the artificial periodicity ap-
pears to be the oscillatory k-behavior observed in Fig. 1,
which is encountered in the case of other coefficients of S

 0.1
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 0.01  0.1  1

|∆
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] E⊥
| /

 φ
2
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φ5

FIG. 4: Amplitudes of the oscillations of |∆ [S]⊥
E
|/φ2 for

N = 30 to 40 versus volume fraction φ. At the higher con-
centrations, this quantity is found to scale approximately as
φ5.
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FIG. 5: Numerical results for [S]0
E

grouped separately for the
extensional (positive value for small N) and shear flows scaled
by φ7 vs. N .

as well. To study this point, we extract the oscillations
subtracting the fitted forms as, for example,

∆ [S]
⊥
E = [S]

⊥
E −

(

D[S]⊥
E + k2A[S]⊥

E

)

. (47)

Figure 4 shows the absolute value of the oscillations

|∆[S]
⊥
E | divided by φ2 in the range 30 ≤ N ≤ 40 where,

as Figs. 5 to 7 show, a peak of the oscillation appears.
The factor φ2 comes from the fact that, numerically,

D[S]⊥
E = −13.0φ2 + O(φ3). The amplitude of the oscilla-

tions is particularly prominent at the higher densities.
For the shear problem, the effective viscosity is es-

sentially the coefficient [S]
0
E which is obtained from the

uniform average without introducing the statistical bias
which produces the non-uniform number density given
in (15). If, in calculating this quantity, we separate the
average found for the cases of extensional flow (diagonal
E∞) from those for shear flow (in which E∞ has only off-
diagonal elements), we find results that oscillate about
each other as shown in Fig. 5. When these two averages
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are combined to produce the final average, however, the
oscillations disappear and this quantity becomes almost
independent of k. This result may be related to the fact
that, when the particles are arranged in a regular simple
cubic lattice, there are two different values of the effective
viscosity.42

The numerical results for ∆ [S]
⊥
E are shown in Fig. 6

scaled by φ7. With this scaling, the results are found to
be nearly independent of φ and to exhibit a strong regu-
larity in their dependence on the number of particles in
the unit cell, rather than on ka. Indeed, upon comparing
Figs. 4 and 6, we notice that the zeros cluster around
the interesting numbers N = 27(= 33), 45(= 2233), and
64(= 43). A similar behavior is encountered for all the
other ∆ [S] quantities, which are scaled in the same way
and shown together in Fig. 7 for φ = 45%.
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FIG. 6: ∆ [S]⊥
E

/φ7 vs. N for different volume fractions.
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∆[S]E
0

∆[S]E
E
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⊥
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||
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⊥

-∆[S]F
⊥
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||

FIG. 7: ∆ [S] /φ7 vs. N for φ = 0.45 and all cases.

The observed regularity of the oscillatory behavior that
we have described suggests the presence of a well-defined
mechanism which is not a statistical artifact.

IV. THE POLAR VECTOR OF THE

ANTISYMMETRIC STRESS

We proceed in the same way for the polar vector of the
antisymmetric stress, V . By including all the terms with
the correct parity and vectorial nature which contribute
to leading order in k we write

V = V1u∆

+V2a
2
Em · ∇φ + V3a

2∇2um

+a2
∇ × (VΩΩ∆) . (48)

We should note that, writing the last term in the form
shown rather than, more generally, as a linear combina-
tion of ∇×Ω∆ and Ω∆ ×∇φ, is an educated guess the
accuracy of which we have no way to assess.

The leading terms in k give

[V ]
0
F = V1[u∆]0F , (49)

[V ]
‖
F = V1[u∆]

‖
F + φ

dV1

dφ
[u∆]0F , (50)

[V ]
⊥
F = V1[u∆]⊥F + φ

dV1

dφ
[u∆]0F − V3(ka)2[um]⊥F ,(51)

[V ]
⊥
T = V1[u∆]⊥T − V3(ka)2[um]⊥T

+φ
d

dφ
(VΩ Ω) , (52)

[V ]
‖
E = V1[u∆]

‖
E + V2kaφ, (53)

[V ]
⊥
E = V1[u∆]⊥E − V3k

2[um]⊥E + V2kaφ. (54)

Here Ω(φ) is the hindrance function for rotation intro-
duced later in Eq. (67). Terms of higher-order in k are
shown in the Appendix.

The coefficient V1 is determined from the uniform part
of the force problem as

V1 =
A[V ]0

F

A[u∆]0
F

, (55)

which is the limit of (49) as k → 0. Figure 8 shows
this coefficient calculated from (55). It is seen that V1

increases rapidly with concentration, which makes the
effect of the corresponding term significant for non-dilute
suspensions.

Substituting V1 from (55) into (50) and taking the limit
k → 0, we have φ dV1/dφ from the parallel component
of the force problem as

φ
dV1

dφ
=

1

A[u∆]0
F

(

A[V ]
‖
F − A[V ]0

F

A[u∆]
‖
F

A[u∆]0
F

)

. (56)

Figure 9 shows dV1/dφ calculated from (56), as well as
the estimation by numerical differentiation of (55). The
two results are consistent.

From the perpendicular component of the force prob-
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FIG. 8: The coefficient V1 introduced in Eq. (48) and calcu-
lated from (55) vs. volume fraction φ.
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F||

F0

FIG. 9: Derivative dV1/dφ of the coefficient V1 from (56)
(circles) compared with the numerical differentiation of the
results of the previous figure (triangles).

lem (51), we have V3 as

V3(φ) =
1

D[um]⊥
F

(

A[V ]
‖
F − A[V ]⊥

F

−A[V ]0
F

A[u∆]
‖
F − A[u∆]⊥

F

A[u∆]0
F

)

. (57)

From the parallel component of the shear problem (53),
we have V2 as

V2(φ) =
1

φ

(

A[V ]
‖
E − A[V ]0

F

A[u∆]
‖
E

A[u∆]0
F

)

, (58)

which, substituted into the perpendicular component of
the shear problem (54), gives an alternative expression
for V3:

V3(φ) =
1

D[um]⊥
E

(

A[V ]
‖
E − A[V ]⊥

E

−A[V ]0
F

A[u∆]
‖
E − A[u∆]⊥

E

A[u∆]0
F

)

. (59)

Figure 10 shows V3/φ calculated from (57) and (59). Di-
vision by φ is suggested by the dilute-limit result (9)
which predicts a value -11/140 for this quantity (horizon-
tal line) as φ → 0, in good agreement with the numerical
results. The consistency between the two determinations
of V3 is also good, which implies, among others, that V1

calculated for the torque and shear problems is consistent
with that calculated for the force problem.

-0.4

-0.3

-0.2

-0.1

 0

 0  0.1  0.2  0.3  0.4  0.5

V
3 

/ φ
volume fraction φ

F

E

FIG. 10: Graph of V3/φ compared with the dilute-limit result
-11/140 shown by the horizontal line.
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FIG. 11: The coefficient V2; the solid line is the dilute-limit
result 1/7.

Figure 11 shows V2 calculated from (58). The hor-
izontal line is the value 1/7 given by the dilute result
(9), with which the numerical results are in close agree-
ment. For volume fractions of 30% and higher, the error
is larger and it is difficult to make definite statements on
the φ-dependence of this quantity in this range.



9

From (52), upon using (57) to express V3, we have

φ
d

dφ
(VΩ Ω) = A[V ]⊥

T − V1A
[u∆]⊥

T + V3D
[um]⊥

T (60)

= A[V ]⊥
T +

D[um]⊥
T

D[um]⊥
F

(

A[V ]
‖
F − A[V ]⊥

F

)

(61)

−
A[V ]0

F

A[u∆]0
F

{

A[u∆]⊥
T +

D[um]⊥
T

D[um]⊥
F

(

A[u∆]
‖
F − A[u∆]⊥

F

)

}

,

or, alternatively, upon using (59),

φ
d

dφ
(VΩ Ω) = A[V ]⊥

T +
D[um]⊥

T

D[um]⊥
E

(

A[V ]
‖
E − A[V ]⊥

E

)

−
A[V ]0

E

A[u∆]0
E

{

A[u∆]⊥
T +

D[um]⊥
T

D[um]⊥
E

(

A[u∆]
‖
E − A[u∆]⊥

E

)

}

,(62)

-0.2

-0.15
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-0.05

 0
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(d
 / 

d 
φ)

 V
Ω

 Ω

volume fraction φ

F

E

FIG. 12: d(VΩΩ)/dφ vs. φ from Eqs. (61) (circles) and (62)
(triangles).

Figure 12 shows d(VΩΩ)/dφ calculated using the two
results for V3 shown in Fig. 10 and V1 from Eq. (55). We
do not have a dilute-limit value to compare with these
results. However they appear to be numerically well-
behaved and non-zero.

The computed values of the coefficients of the vector
V are shown in Table II.

V. THE AXIAL VECTOR OF THE

ANTISYMMETRIC STRESS

The closure relation for the axial vector of the antisym-
metric stress R in principle may contain several terms as
shown in the Appendix. However, as in the case of the
symmetric stress, we are able to calculate the closure co-
efficient only for the first term:

R = R1Ω∆. (63)

The leading term for the torque problem is k0 and, equat-
ing the corresponding coefficients, gives

A[R]0
T = R1A

[Ω∆]0
T , (64)

A[R]
‖
T = R1A

[Ω∆]
‖
T + φ

dR1

dφ
A[Ω∆]0

T , (65)

A[R]⊥
T = R1A

[Ω∆]⊥
T + φ

dR1

dφ
A[Ω∆]0

T (66)

which are the analog of Eqs. (41) to (45) for this case.
Terms of higher-order in k are shown in the Appendix.

From (64), which derives from the constant term of the
torque problem, we have

R1(φ) =
A[R]0

T

A[Ω∆]0
T

=
3φ

Ω(φ)
, (67)

where use has been made of the fact that A[R]0
T equals 3φ

as shown in Ref. 27, and A[Ω∆]0
T is Ω(φ), the hindrance

function for rotation,29 a graph of which is given in the
reference. Figure 13 shows R1 calculated from this equa-
tion. The line is calculated using the following fit for
Ω(φ):

Ω = 1.0 − 1.5φ + 0.67φ2 (68)

When R1 calculated from (67) is substituted into (65)
(T ‖ term), we have

φ
dR1

dφ
=

1

A[Ω∆]0
T

(

A[R]
‖
T − A[R]0

T

A[Ω∆]
‖
T

A[Ω∆]0
T

)

. (69)

while, in a similar way, we find from (66) (T⊥ term)

φ
dR1

dφ
=

1

A[Ω∆]0
T

(

A[R]⊥
T − A[R]0

T

A[Ω∆]⊥
T

A[Ω∆]0
T

)

. (70)

Figure 14 shows dR1/dφ calculated from (69) and (70)
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FIG. 13: The coefficient R1 defined in Eq. (63) calculated
from (67).

as well as the derivative of R1 calculated from the fit
mentioned before. The consistency is very good.
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TABLE II: Closure coefficients.

φ V1 V2 V3fromF V3fromE d(VΩΩ)/dφ R1

0.01 0.00312 0.143 −0.001 −0.0006 −0.00003 0.03045
0.02 0.00654 0.14 −0.002 −0.0017 −0.00008 0.06181
0.03 0.0103 0.15 −0.003 −0.0018 −0.0003 0.09411
0.04 0.0144 0.15 −0.004 −0.003 −0.0003 0.12738
0.05 0.0190 0.15 −0.006 −0.004 −0.0007 0.1617
0.10 0.0489 0.15 −0.012 −0.009 −0.0029 0.3493
0.15 0.095 0.15 −0.019 −0.016 −0.0070 0.5679
0.20 0.166 0.16 −0.025 −0.024 −0.012 0.8227
0.25 0.269 0.15 −0.041 −0.033 −0.024 1.1212
0.30 0.41 0.11 −0.06 −0.05 −0.04 1.470
0.35 0.63 0.10 −0.07 −0.07 −0.05 1.882
0.40 0.94 0.2 −0.09 −0.08 −0.08 2.368
0.45 1.4 0.1 −0.11 −0.13 −0.10 2.94
0.50 2.1 0.0 −0.1 −0.20 −0.2 3.61

 2
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dR
1/
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T||

T⊥

FIG. 14: dR1/dφ from (69) (circles) and (70) (triangles); the
line is the analytical derivative of a fit to the data.

VI. CONCLUSIONS

Our study of the stress in a spatially non-uniform sus-
pension of equal spheres in Stokes flow has been based on
the identification of the three components of this quan-
tity shown in Eq. (1): a symmetric traceless term, and
an antisymmetric term consisting of an axial and a polar
contribution. This result, derived in Ref. 32 and, more
generally, in Ref. 36, extends the well-known result of
Batchelor43 to the non-homogeneous case. The focus of
this paper has been on the derivation of closure relations
for these quantities.

We have considered three different physical problems:
particles subjected to a force, a torque, and shear, find-
ing, for the effective properties that we could test, the
same (or, at least numerically consistent) values in all
the problems. For example, we were able to find four
independent determinations of the effective viscosity µe,
all of which give very consistent values. We have also
found that, to leading order in the spatial dishomogene-
ity, it is consistent to evaluate µe in correspondence of the

local volume fraction φ, with other possible terms only
giving higher-order contributions to the symmetric com-
ponent of the stress. A similar conclusion was reached for
the closure of the axial component of the antisymmetric
stress.

The polar component of the antisymmetric stress, V ,
is a new effect which had not been identified before. We
have found a closure relation for this quantity, the coeffi-
cients of which also exhibit consistency among the differ-
ent problems. Thus, the existence of this quantity seems
well defined beyond any uncertainty deriving from statis-
tical error. For the axial component of the antisymmetric
stress, our results are more limited but are in agreement
with those found by others.

Due to the imperfectly understood consequences of the
artificial periodicity arising from the use of a repeated
fundamental cell, we have only been able to focus on
the leading-order behavior in the wave number k of the
spatial non-uniformity. To this order, we have found that
the dominant term of the symmetric stress is the product
of the effective viscosity and Em, the rate of strain of
the volumetric flux of the mixture um. In comparison
with this term, the other terms that could possibly be
present give contributions lower by an order k2, which
our methods prevent us from determining.

Since it is ∇ × ∇ × V which enters the momentum
equation, the contribution of V to the momentum equa-
tion is also O(k2) smaller than that of ∇ · (µeEm). Thus,
at least for the three physical situations studied here,
the new term V would only give a small contribution.
Whether this conclusion holds generally depends on the
relative magnitude of the spatially non-uniform parts of
um and the slip velocity u∆. It does not appear possi-
ble to make a general statement about this point at this
time.

Our results have been obtained by carrying out ensem-
ble averages using biased probability distributions corre-
sponding to a prescribed form of the particle number den-
sity. We have not attempted to incorporate any special
structure for the two-particle and higher-order particle
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distribution functions which, as is well known, in general
depend on the particular flow considered. In a recent
paper,29 we have shown how to bias the probability dis-
tribution so as to reproduce an arbitrary functional form
for the particle number density. We believe that a sim-
ilar approach will enable us to control the second- and
higher-order distribution functions. This point will be
pursued in future publications.
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APPENDIX: DETAILS OF THE CLOSURES

1. Expression for the stress

Equation (1) was given as Eq. (10.19) in Ref.32. Ex-
plicit expressions for the various contributions were de-
rived in terms of the coefficients appearing in Lamb’s
general solution of the Stokes equations33–35 in the form

S =
4

3
πµ

∞
∑

l=2

(−1)l+1

l!
(2l + 1)Sl(a

2∇2) ∇
l−2 ·

(

n[∇l (r2l+1q−l−1)]r=a

)

, (A.1)

R =
4

3
πµ

∞
∑

l=2

(−1)l+1

(l − 1)!

{

(2l + 1)Sl(a
2∇2) ∇

l−1 ·
(

n[∇l (r2l+1χ−l−1)]r=a

)}

, (A.2)

V =
4

3
πµ

∞
∑

l=2

(−1)l+1

l!

{

(2l + 1)(2l + 3)Sl+1(a
2∇2) ∇

l−1 ·
(

n
[

∇l
(

r2l+1φ∗
−l−1

)]

r=a

)

+a2Sl+1(a
2∇2) ∇

l−1 ·
(

n[∇l (r2l+1q−l−1)]r=a

)}

. (A.3)

Here the operators Sl are defined by

Sl =
3

(2l + 1)!!

[

1 +
a2∇2

1!21(2l + 3)

+
(a2∇2)2

2!22(2l + 3)(2l + 5)
+ · · ·

]

. (A.4)

The term
[

∇
l
(

r2l+1q−l−1

)]

r=a
and similar ones are con-

stants, and the overline denotes the ensemble average.

2. The polar vector of the antisymmetric stress V

The closure relation for the polar vector V in terms
of um, u∆, and Ω∆ must have the form in (48), where
we neglect possible terms containing higher order deriva-
tives. Upon combining the parameterizations for the
three different problems into a single expression as in
Ref. 29, which is justified by the linearity of the problem,
we write:

V (x) = [V ]0F WF

+ε sin (k · x)
(

[V ]
‖
F W

‖
F + [V ]⊥F W⊥

F

)

+ε cos (k · x) [V ]⊥T W⊥
T (A.5)

+ε cos (k · x)
(

[V ]
‖
EW

‖
E + [V ]⊥EW⊥

E

)

,

Upon substituting these parameterizations and the
corresponding ones for the velocities into (48) and equat-
ing the corresponding terms, we find Eqs. (49) to (54) in
the text and

[V ]
⊥
F = V1[u∆]⊥F + φ

dV1

dφ
[u∆]0F − V3k

2[um]⊥F

+VΩk[Ω∆]⊥F , (A.6)

[V ]
⊥
E = V1[u∆]⊥E − V3k

2[um]⊥E + V2kφ

−VΩk[Ω∆]⊥E . (A.7)

The ensemble-averaged coefficients of V have the fol-
lowing k-dependence:

[V ]
0
F = A[V ]0

F , (A.8)

[V ]
‖
F = A[V ]

‖
F + kB[V ]

‖
F + k2C [V ]

‖
F , (A.9)

[V ]
⊥
F = A[V ]⊥

F + kB[V ]⊥
F + k2C [V ]⊥

F , (A.10)

[V ]
⊥
T = k

(

A[V ]⊥
T + kB[V ]⊥

T

)

, (A.11)

[V ]
‖
E = k

(

A[V ]
‖
E + kB[V ]

‖
E

)

, (A.12)

[V ]
⊥
E = k

(

A[V ]⊥
E + kB[V ]⊥

E

)

. (A.13)

We now substitute all the k-parameterizations of the var-
ious ensemble-averaged coefficients for V , um, etc. into
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Eqs. (49) to (54). In this way, at the leading order in k –
i.e., O(k0) in the force problem and O(k1) in the torque
and shear problems – we find Eqs. (55) to (60).

3. The axial vector of the antisymmetric stress R

In principle, the closure relation for the axial vector
of the antisymmetric stress R must feature the relative
angular velocity Ω∆ and the axial vectors that can be
constructed with um and u∆ by taking the curl. The
resulting expression then takes the form

R = R1Ω∆

+R2a
2
∇ × (Em · ∇φ) + R3a

2∇2
∇ × um

+R4a
2
∇ × u∆ + R5 (∇φ) × u∆. (A.14)

As before, other possible terms containing higher-order
derivatives have been neglected.

In this case, the role played before by the fundamental
polar vector W for each one of the three problems is
played by a fundamental axial vector ω. For the force
problem, this is given by

aω⊥
F = k̂ × WF , (A.15)

for the torque problem by

ωT =
T0

8πµa3
, (A.16)

and, for the shear problem, by

ω⊥
F = k̂ ×

(

E
∞ · k̂

)

. (A.17)

The equation analogous to (A.5) is

R(x) = [R]0T ωT

+ ε cos (k · x) [R]⊥F ω⊥
F

+ ε sin (k · x)
(

[R]
‖
T ω

‖
T + [R]⊥T ω⊥

T

)

+ ε sin (k · x) [R]⊥Eω⊥
E , (A.18)

in which ω
‖
T and ω⊥

T are the components of ωT parallel
and perpendicular to k. As before we find

[R]
0
T = R1[Ω∆]0T , (A.19)

[R]
‖
T = R1[Ω∆]

‖
T + φ

dR1

dφ
[Ω∆]0T , (A.20)

[R]
⊥
T = R1[Ω∆]⊥T + φ

dR1

dφ
[Ω∆]0T

+R3k
3[um]⊥T − R4k[u∆]⊥T , (A.21)

[R]
⊥
F = R1[Ω∆]⊥F

−R3k
3[um]⊥F + R4k[u∆]⊥F

+R5φk[u∆]0F , (A.22)

[R]
⊥
E = −

R3

2
k[um]⊥E + R1[Ω∆]⊥E

+R3k
3[um]⊥E − R4k[u∆]⊥E

−R2k
2φ. (A.23)

The k-dependence fit for the coefficients of R is

[R]
0
T = A[R]0

T , (A.24)

[R]
‖
T = A[R]

‖
T + k2C [R]

‖
T , (A.25)

[R]
⊥
T = A[R]⊥

T + k2C [R]⊥
T , (A.26)

[R]
⊥
F = k

(

A[R]⊥
F + kB[R]⊥

F

)

, (A.27)

[R]
⊥
E = k2

(

A[R]⊥
E + kB[R]⊥

E

)

(A.28)

from which, by the usual procedure, we derive Eqs. (64),
(65), and (66) to the leading order O(k0).

4. k-expansions of the average coefficients for Ω,

um, and u∆

Here we summarize the k-expansions of the averages
for Ω∆, u∆, and um, which were given in our earlier
paper.29

[Ω∆]
0
T = A[Ω∆]0

T , (A.29)

[Ω∆]
‖
T = A[Ω∆]

‖
T + (ka)2C [Ω∆]

‖
T , (A.30)

[Ω∆]
⊥
T = A[Ω∆]⊥

T + (ka)2C [Ω∆]⊥
T , (A.31)

[Ω∆]
⊥
F = (ka)

(

A[Ω∆]⊥
F + (ka)B[Ω∆]⊥

F

)

, (A.32)

[Ω∆]
⊥
E = (ka)2A[Ω∆]⊥

E , (A.33)

[um]
⊥
F =

1

(ka)2

(

D[um]⊥
F + (ka)2A[um]⊥

F

+(ka)3B[um]⊥
F

)

, (A.34)

[um]
⊥
T =

1

ka

(

D[um]⊥
T + (ka)2A[um]⊥

T

)

, (A.35)

[um]
⊥
E =

1

ka

(

D[um]⊥
E + (ka)2A[um]⊥

E

)

, (A.36)

[u∆]
0
F = A[u∆]0

F + (ka)B[u∆]0
F , (A.37)

[u∆]
‖
F = A[u∆]

‖
F + (ka)B[u∆]

‖
F , (A.38)

[u∆]
⊥
F = A[u∆]⊥

F + (ka)B[u∆]⊥
F , (A.39)

[u∆]
⊥
T = (ka)

(

A[u∆]⊥
T + (ka)B[u∆]⊥

T

)

, (A.40)

[u∆]
‖
E = (ka)

(

A[u∆]
‖
E + (ka)B[u∆]

‖
E

)

, (A.41)

[u∆]
⊥
E = (ka)

(

A[u∆]⊥
E + (ka)B[u∆]⊥

E

)

. (A.42)
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