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The first part of the paper shows how ensemble averages corresponding to a prescribed statistically
non-uniform spatial distribution of particles can be evaluated starting from a statistically uniform
ensemble. The method consists in attributing to each realization of the uniform ensemble a suitable
weight which is explicitly constructed. As an application of this general procedure, in the second part
of the paper, the behavior of particles subjected to a force or torque in a statistically non-uniform
suspension, and the behavior of a suspension when subjected to a uniform shear, are studied. In
particular, it is shown how the average translational and angular velocities of the particles with
respect to the mixture satisfy Faxén-like relations. Furthermore, it is pointed out that several
quantities which vanish identically in the case of a uniform suspension are non-zero in the presence
of spatial non-uniformities.

I. INTRODUCTION

The construction of a general theory of suspensions and
other disperse two-phase flows is an important problem
in statistical physics and fluid mechanics, with significant
implications for both science and technology.

In view of the limited success of phenomenological ap-
proaches, a considerable effort has been devoted to the
development of such a theory starting from the funda-
mental microscopic description of the fluid-particle and
particle-particle interactions. The early analytical stud-
ies by Batchelor,1,2 Brenner,3–5 Mazur,6,7 and many oth-
ers were mostly limited to dilute situations. The ad-
vent of powerful numerical simulation techniques, such
as those described in Refs. 8–13, opened the way to the
study of dense suspensions and the literature contains
many papers devoted, on the one hand, to the charac-
terization of dense suspensions in terms of their effective
properties such as viscosity14,15 and hindrance function16

and, on the other, to the direct simulation of specific
flows, such as channel flow.17–19 In spite of the obvious
usefulness of such direct simulations, computational lim-
itations prevent their application to practical flows for
which the only possible description is – and will remain
for a long time to come – in terms of averaged equations.
For this reason, the study of average effective properties
such as effective viscosity and mean hydrodynamic inter-
phase force remains of primary importance.

With very few exceptions restricted to the dilute
situation,20,21 all the studies devoted to the derivation
of such macroscopic properties, dealt with statistically
spatially uniform systems. It is clear that the view of
suspension behavior gained in this way is a partial one.
For example, in the simple shear flow of a uniform suspen-
sion, the velocity of force-free particles is the same as the
local volumetric velocity of the mixture and, therefore,
the only remaining effective property is the effective vis-
cosity multiplying the rate-of-strain tensor of this mean
flow. While, in principle, one could construct a rate-of-
strain tensor of the relative motion and a corresponding

viscosity,22 no information on this new quantity can be
gained from the simulation of a uniform system. The
same remark applies to many other effective properties of
a suspension. To be sure, formally, these non-uniformity
effects scale as the ratio of the particle radius a to the
macroscopic length L, or of the mean inter-particle dis-
tance aφ−1/3, where φ is the particle volume fraction,
to L, but this consideration is not sufficient to dismiss
them. For example while, in Stokes flow, the velocity
disturbance generated by a particle extends over a dis-
tance proportional to a, the proportionality constant is
large so that the corresponding a/L correction is not al-
ways negligible. Furthermore, important specific effects
of spatial non-uniformity have been identified such as
shear-induced diffusion,23,24 stratification,25,26 and oth-
ers. Fundamentally, this issue is related to the finite size
of the particles which is a central aspect of the behavior
of dense suspensions.

These considerations have motivated our recent work
on statistically non-homogeneous suspensions.22,27–29

The present paper is a continuation and extension of that
work and consists of two parts. In the first part, we show
how ensemble averages corresponding to an arbitrarily

prescribed macroscopic non-uniformity can be calculated.
In the second part of the paper, we consider a simple
such non-uniformity – a sine wave – and, by ensemble-
averaging the results of many thousands of direct simula-
tions, derive for a suspension Faxén-like relations analo-
gous to the well-known ones applicable to single particles.
It is also argued that, while the derivation of the result
relies on a specific spatial non-uniformity, the validity of
the conclusion is more general and extends to arbitrary
situations with weak non-uniformities. Following a stan-
dard practice (see e.g. Ref. 10,15,30,31), the simulations
are conducted in a periodic cell containing randomly ar-
ranged particles. The present formulation also confirms
the earlier derivation of microscopic quantities, such as
the mixture velocity, which was carried out by different
means.29

In §II, we introduce an ensemble average method which
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FIG. 1: A sketch of the generation of ensemble averages for
spatially statistically non-uniform systems on the basis of a
spatially uniform ensemble. Ensemble A is (roughly) uniform,
while ensemble B has a preferential concentration of particles
in the lower right corner. Averages over ensemble B can be
calculated attributing weights of 1, 0, and 2, respectively, to
the configurations of ensemble A.

can treat arbitrary non-uniformities. In §III, we show a
procedure to evaluate physical quantities for non-uniform
suspensions using the non-uniform ensemble average. In
§V, the numerical results for a linear sinusoidal non-
uniformity are shown.

II. NON-UNIFORM ENSEMBLE

A widely used procedure to study the bulk properties
of an extended (ideally, infinite) suspension is to fill the
space with copies of a fundamental cell in which the par-
ticles are randomly arranged. The relevant equations are
then solved only in the fundamental cell with periodicity
boundary conditions.

In this section, we demonstrate how to evaluate ensem-
ble averages for a non-uniform suspension on the basis of
a statistically uniform ensemble of random arrangements
of particles inside the fundamental cell, thus avoiding the
generation of an actual non-uniform ensemble. By this
device, the uniform ensemble can be used to derive the
statistical properties of a suspension with a built-in, pre-
scribed, spatial non-uniformity.

A. Universal ensemble

By a procedure which will be explained below in Sec.
IVC, we construct a statistical ensemble by randomly
arranging Np non-overlapping equal spherical particles
with radius a in a cubic cell of side L.

In principle, this ensemble contains all possible config-
urations, regular and uniform as well as non-uniform or
even heavily biased in the spatial arrangement of the par-
ticles. It is evident that, if an equal weight is assigned to

each configuration, the resulting ensemble averages will
correspond to a statistically homogeneous system. How-
ever, by giving the configurations unequal weights, this
same ensemble can also mimic a spatially non-uniform
system. It is for this reason that we refer to the ensem-
ble thus constructed as “universal”.

To illustrate the point by a simple cartoon-like exam-
ple, Fig. 1 shows two ensembles A and B, each consist-
ing of three configurations with 5 particles. ensemble A
(roughly) describes a spatially uniform system, while en-
semble B describes a system in which the accumulation
of particles in the right lower corner is more likely. Evi-
dently, instead of constructing the ensemble B, the same
statistical bias can be obtained by assigning weights 1, 0
and 2, respectively, to the configurations in the ensemble
A. This is obvious. The non-trivial question, to which we
now provide an answer, is how to assign the weights in
such a way that a prescribed spatial non-uniformity can
be generated.

More precisely, in this section we consider the following

problem: Given a generic quantity A(CNp

i ) pertaining to
the i-th realization of an ensemble of Nc configurations

{CNp

1 , . . . , CNp

Nc
}, each one with Np particles, define its

average by

〈A〉 =
1

Nc

Nc
∑

i=1

W(CNp

i ) A(CNp

i ) , (1)

where the W(CNp

i )’s are suitable weights. How should
these weights be chosen for the average so defined to cor-
respond to a system with a prescribed macroscopic non-
uniformity in the particle position? Clearly, when all
the weights are taken equal to 1, we have the uniform-
ensemble average, denoted by the index 0:

〈A〉0 =
1

Nc

Nc
∑

i=1

A(CNp

i ) . (2)

B. Uniform and non-uniform averages

Each realization CNp

i of the ensemble consists of a set

of vectors x1
i , x2

i , · · · , x
Np

i denoting the position of the

center of particle 1, 2, · · · , Np. For the realization CNp

i =

{x1
i ,x

2
i , · · · ,x

Np

i }, the (microscopic) number density is
defined by

ni(x) =

Np
∑

α=1

δ (x − xα
i ) , (3)

and can be expanded in a Fourier series:

ni(x) =
∑

k

ñi(k)e−ik·x , (4)
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with coefficients given by

ñi(k) =
1

V

∫

dx eik·xni(x) =
1

V

Np
∑

α=1

eik·xα
i , (5)

where V = L3 is the volume of the fundamental cell.
The summation in (4) is extended to all the vectors k

compatible with the cell. For k = 0 we evidently have

ñi(0) =
Np

V
= n0 (6)

for all realizations and, therefore,

〈n〉0 = n0 , (7)

the volume-averaged particle number density. For non-
zero k, we have

〈ñ(k)〉0 = 〈 1

V

Np
∑

α=1

eik·xα
i 〉0 = 0. (8)

Thus, we may write

〈ñ(k)〉0 = n0δk0. (9)

For k 6= 0, the static structure factor S(k) of the uniform
ensemble is related to ñ by

〈ñ(−k′) ñ(k)〉0 = δk′k

Np

V 2
S(k). (10)

In order to generate weights for the non-uniform en-
semble, we introduce a function w(x) regular in the fun-
damental cell and with the same periodicity, and assign

to the i-th realization CNp

i the weight W(CNp

i ) defined by

W(CNp

i ) =
1

Np

Np
∑

α=1

w(xα
i ) =

1

Np

∫

dxw(x)ni(x)

=
1

n0

∑

k

w̃(k) ñi(−k). (11)

The relation between the function w(x) and the spatial
structure of the ensemble is readily found by calculat-
ing the average number density with the above-defined
weights. For k = 0 we have

〈ñ(0)〉 = n0
V

Np

∑

k

w̃(k)〈ñ(−k)〉0 = n0w̃(0), (12)

where we use (1) with (6) and (11), from which w̃(0) =
1. For k 6= 0,

〈ñ(k)〉 =
1

Nc

Nc
∑

i=1

W(CNp

i ) ñi(k)

= w̃(k)
S(k)

V
, (13)

where we use (10). We thus conclude that, if the desired
average number density is given by

〈n〉(x) ≡ n(x), (14)

we can generate it by assigning to each configuration of
the ensemble a weight according to (11), where the func-
tion w is given in terms of its Fourier coefficients by

w̃(k) =
V

S(k)
ñ(k), (15)

in which ñ(k) is the Fourier coefficient of the prescribed
number density (14).

C. Field and particle quantities

Extending the previous considerations to a generic field
quantity A(x), we expand it in a Fourier series as

A(x) =
∑

k

Ã(k)e−ik·x , (16)

where

Ã(k) =
1

V

∫

dx eik·xA(x). (17)

The non-uniform ensemble average of A with the weight
w̃(k) is given by

〈A〉(x) = 〈Ã(0)〉0
+

1

n0

∑

k 6=0

∑

k′

w̃(k′)〈ñ(−k′) Ã(k)〉0 e−ik·x, (18)

where the averages carrying the subscript 0 are taken over
the homogeneous ensemble as defined in (2). This form

is found after observing that, for k 6= 0, 〈ñ(−k) Ã(0)〉0
= 0 and 〈Ã(k)〉0 = 0.

Rather than dealing with complex exponentials, for ac-
tual computations it is more convenient to make use of
Fourier expansions in real form. For a generic field quan-
tity A(x) the Fourier representation analogous to (16)
is

A(x) = Ã(0)+
∑

k>0

{

Ãc(k) cos (k · x) + Ãs(k) sin (k · x)
}

,

(19)
where the symbol k > 0 appended to the summation re-
stricts it to wave numbers all the components of which
are positive, and

Ãc(k) =
2

V

∫

dx A(x) cos (k · x) , (20)

Ãs(k) =
2

V

∫

dx A(x) sin (k · x) . (21)

In addition to field variables, the averages of quantities
Aα carried by each particle α are also of interest. Exam-
ples are the translational and angular velocity, the force
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FIG. 2: An example of the linear sinusoidal non-uniformity.

multipoles, and others. In order to calculate these aver-
ages, we first transform Aα to a field variable by writing

A(x) =

Np
∑

α=1

δ (x − xα) Aα. (22)

The Fourier coefficients are then

Ãc(k) =
2

V

Np
∑

α=1

Aα cos (k · xα) , (23)

Ãs(k) = =
2

V

Np
∑

α=1

Aα sin (k · xα) , (24)

and their averages are readily calculated by summing
over the configurations as in (18). After this step, the
particle average is calculated from

〈A〉P (x) =
〈A〉(x)

〈n〉(x)
. (25)

The need for the normalization by 〈n〉(x) is readily
proven by considering the special case Aα = 1. By this
device, we can treat in a unified way both field and par-
ticle quantities through their Fourier coefficients Ã(k).

D. Linear sinusoidal non-uniformity

In the applications of the statistical method to be de-
scribed in this paper, we limit ourselves to a non-uniform
suspension with a weak spatial nonuniformity specified
by the number density

n(x) = n0 (1 + ε sin (k · x)) . (26)

It will be argued, however, that the results found in this
way extend to general weak non-uniformities. In (26) we
take |k| equal in modulus to the smallest wave number
k0 = 2π/L and oriented in one of the three spatial di-
rections. Henceforth, the symbol k will denote one of
these three wave-number vectors. The parameter ε is the

degree of non-uniformity, and we present results valid to
the first order in this quantity. In principle, since the
Stokes problem that we study is linear, linearization in ε
enables us to use Fourier superposition to describe weak
non-uniformities of any form. It may be noted that, to
first order in k included, the volume fraction φ has the
same spatial dependence27

φ(x) = φ0 (1 + ε sin (k · x)) + O(k2) , (27)

in which φ0 = 4
3πa3n0.

With this choice of n(x), all the weight coefficients
vanish except

w̃(0) = 1, w̃s(k) = εn0
V

S(k)
. (28)

Therefore, the non-uniform ensemble average of a the
Fourier coefficients Ã becomes

〈Ã〉 = 〈Ã〉0 + ε〈Ã〉s, (29)

where the non-uniform part 〈Ã〉s is given by

〈Ã〉s =
1

2

V

S(k)
〈ñs(k) Ã〉0, (30)

with, on the basis of (5),

ñs(k) =
2

V

Np
∑

α=1

sin (k · xα) . (31)

The ensemble average of the Fourier expansion (19)
therefore takes the form

〈A〉(x) = 〈Ã(0)〉0 + ε
[

〈Ãc(k)〉s cos (k · x)

+〈Ãs(k)〉s sin (k · x)
]

, (32)

since all other coefficients vanish.
For particle averages, (25) gives, up to O(ε),

〈A〉P (x) =
1

n0

{

〈Ã(0)〉0 + ε
[

〈Ãc(k)〉s cos (k · x)

+
(

〈Ãs(k)〉s − 〈Ã(0)〉0
)

sin (k · x)
]}

.(33)

Equations (32) and (33) show another reason why the
introduction of the parameter ε is useful: the terms mul-
tiplied by ε originate exclusively from the spatial nonuni-
formity and, therefore, by focusing on them, we are
able to identify unambiguously the effect of this non-
uniformity even in the presence of the inevitable statis-
tical noise.

III. PARAMETERIZATION

In this paper, we study three kinds of mobility prob-
lems for non-uniform suspensions, namely the flow in-
duced by mobile particles subject to a constant force (re-
ferred to as “force problem” in the following), a constant
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torque (“torque problem”), or a shear bulk flow (“shear
problem”). We carry out direct numerical simulations
by solving the Stokes equations for each configuration of
the ensemble by the method described later in Sec IV.
From the results for each realization of the ensemble, we
calculate statistical averages according to the relations
developed in the previous section.

It is useful to present the results using a suitable pa-
rameterization, which we now describe. For convenience,
we make use of a unified notation which is first introduced
in the context of the force problem, and then extended
to the other cases.

A. Force problem

For the force problem, i.e., sedimentation, we conduct
numerical simulations where the same force F0 is applied
to each particle. The uniform version of this problem is
therefore characterized by a single fundamental vector

WF =
F0

6πµa
(34)

with µ the fluid viscosity, and, therefore, any vectorial
dependent variable p, such as the mean settling velocity,
must take the form

〈p〉 = [p]
0
F WF , (35)

where [p]
0
F is a coefficient calculated numerically by tak-

ing the ensemble average of the values of p. Here and
in the following we use the subscript F for all quantities
which refer to the applied force problem.

When we turn to the non-uniform case, in addition
to WF , also the wave vector k specifying the direction
of the non-uniformity is introduced. Therefore, it must
be possible to parameterize the non-uniform part of each
vectorial dependent variable as

〈p〉 = [p]
‖
F W

‖
F + [p]

⊥
F W⊥

F , (36)

where the superscripts ‖ and ⊥ are based on the direction

of the unit wave vector k̂ and

W
‖
F =

(

k̂k̂
)

· WF , (37)

W⊥
F =

(

I − k̂k̂
)

· WF . (38)

Clearly WF = W
‖
F + W⊥

F . The only characteristic
pseudo-vector is

aω⊥
F = k̂ × WF , (39)

which is perpendicular to k; the factor a is included
so that ω⊥

F has the dimensions of an angular velocity.
Therefore, any pseudo vector q must be parameterized
as

q = [q]
⊥
F ω⊥

F . (40)

Note that ak̂×ω⊥
F = −W⊥

F , and the parallel component

ω
‖
F is zero.

B. Torque problem

In the second problem, we apply a constant torque T0

to each particle and use the subscript T to denote the
pertaining quantities. Here, for the uniform case, pseudo
vectors must be parameterized as

q = [q]
0
T ωT , (41)

with

ωT =
T0

8πµa3
. (42)

For the non-uniform case we have a single vector:

W⊥
T = ak̂ × ωT , (43)

and two pseudo vectors:

ω
‖
T =

(

k̂ · ωT

)

k̂, (44)

ω⊥
T =

(

I − k̂k̂
)

· ωT . (45)

Note that k̂ × W⊥
T = −aω⊥

T .

C. Shear problem

In the third problem, we apply a linear shear flow,
so that, even in the uniform case, there is an imposed
velocity field given by

u∞(x) = E
∞ · x. (46)

where E∞ is the rate-of-strain tensor of the flow and is
symmetric and traceless. The corresponding results will
carry an index E. Because we cannot construct any vec-
tor or pseudo vector from E∞ only, there cannot be any
uniform contribution to vectors a or pseudo-vectors b

for the shear problem. In the non-uniform case, one can
construct two characteristic vectors:

W
‖
E = a

(

k̂k̂
)

·
(

E
∞ · k̂

)

, (47)

W⊥
E = a

(

I − k̂k̂
)

·
(

E
∞ · k̂

)

, (48)

and one characteristic pseudo vector

ω⊥
F = k̂ ×

(

E
∞ · k̂

)

. (49)

Note that a k̂ × ω⊥
E = −W⊥

E .

D. Summary

Because of the linearity of the Stokes flow, the results
for these three problems can be superposed. Therefore,
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vectors 〈p〉 and pseudo-vectors 〈q〉 are generally param-
eterized as

〈p〉 = [p]
0
F WF

+ [p]
‖
F W

‖
F + [p]

⊥
F W⊥

F

+ [p]
⊥
T W⊥

T

+ [p]
‖
E W

‖
E + [p]

⊥
E W⊥

E , (50)

and

〈q〉 = [q]
0
T ωT

+ [q]
⊥
F ω⊥

F

+ [q]
‖
T ω

‖
T + [q]

⊥
T ω⊥

T

+ [q]
⊥
E ω⊥

E . (51)

IV. NUMERICAL METHOD

We now introduce suitable expressions for the quanti-
ties on which we focus in this paper, namely the average
mixture velocity (or volumetric flux), denoted by 〈um〉,
the average mixture angular velocity, 〈Ωm〉, the average
particle velocity, 〈U〉, and the average particle angular
velocity 〈Ω〉. The numerical procedures developed in the
previous sections and applied to the above quantities are
also outlined. The results will be shown and discussed in
the next section.

A. Many-body problem

The input to the non-uniform ensemble averaging pro-
cedure is the solution of the Stokes many-body problem,
which can be expressed in the form of a generalized mo-
bility equation,







U − U∞

Ω − Ω
∞

−E∞

−U ∞






= M ·







F

T

S

F






, (52)

where U , Ω are translational and rotational velocities of
the particles, and U∞ and Ω

∞ are defined by

U∞(α) =
1

4πa2

∫

Sα

dS(y) u∞, (53)

Ω
∞(α) =

1

4πa2

∫

Sα

dS(y)
3

2a2
(y − xα) × u∞(y).(54)

Furthermore, E∞, and U ∞ are the strain tensor and
higher order velocity moments, of the imposed flow u∞,
M is the generalized mobility matrix, and F , T , S, and
F are force, torque, stresslet, and higher order force mo-
ments of the particles.8,32 Detailed definitions are sum-
marized in Appendix A. When u∞ is itself a Stokes

velocity field and, therefore, biharmonic, we have

U∞(α) =

(

1 +
a2

6
∇2

)

u∞(xα) , (55)

Ω
∞(α) =

1

2
∇ × u∞(xα) . (56)

The three problems we study are mobility problems,
so that F and T are prescribed. For the imposed flow
problem, the quantities U∞, Ω

∞, E∞, and U ∞ are also
given. Therefore, (52) can be solved, and we obtain U ,
Ω, S, and F for each configuration.

To solve the many-body problem, we use the same nu-
merical code as in the previous papers,22,27 which is based
on the method developed by Mo and Sangani.31 This step
is the most time-consuming part of the present method.
In the code, F is expressed by the coefficients of spheri-
cal harmonics appearing in Lamb’s general solution.33,34

In order to save time, we use the solutions of the many-
body problems obtained in Refs. 22,27, to which we add
new calculations for many other values of both volume
fraction φ and particle number Np. For consistency we
use the same parameters, taking into account multipoles
up to the fifth order. In the final processing of the data,
however, only multipoles up to the fourth order are in-
cluded.

For several cases, we also used the Stokesian Dynamics
method32 extended to a periodic system (see Appendix
A), and have confirmed that the two methods give the
same results within the accuracy of the multipole trun-
cation.

B. Mixture velocity

Besides the particle quantities such as U and Ω, we are
also interested in um, the volumetric flux of the mixture.
Tanksley and Prosperetti29 give a detailed expression of
um in terms of Lamb’s coefficients, Here, we give another
expression of um.

For a single realization of the ensemble, the mixture
velocity um is given by the integral35,36

um(x) − u∞(x) = − 1

8πµ

Np
∑

α=1

∫

Sα

dS(y) J(x − y) · f(y),

(57)
where u∞ is the imposed flow, J is the Green function of
the problem, and f is the force density at position y on
the surface of the α-th particle.

Note that the um given by (57) is not only defined in
the fluid domain, but also inside the particles, where, in
fact, it is identical to the rigid-body value

um(x) = Uα + Ω
α × x, (58)

because it is the Stokes solution satisfying this equa-
tion on the particle surface due to the no-slip condition.
Therefore, (57) not only gives the fluid velocity in the
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fluid domain, but also the volumetric flux of the mixture
in the whole domain.

In the present theory, we need the Fourier coefficients
of the mixture velocity rather than um(x) itself. In this
case, we can avoid the complexity of the Ewald summa-
tion for periodic boundary conditions and use the expres-
sion valid in an infinite volume by modifying the wave
vector k from a continuous to a discrete variable; J(r) is
then the Oseen tensor given by

J(r) =
1

r

(

I +
rr

r2

)

. (59)

This is the same procedure for the analysis of a periodic

system used by Ladd10 and applied to an infinite system
in Ref. 7. Upon using the convolution relation in (57),
the Fourier coefficient of the relative velocity (um −u∞)
is given by

(ũm)i (k) =
1

µ

1

k2

(

δij −
kikj

k2

) ∞
∑

n=0

inkn
k···

n!
F̃

(n)
j,k···(k),

(60)

where F̃ (k) is the Fourier coefficient of the force moment
F . In real form, the cosine and sine coefficients are

(ũc
m)i (k) =

1

µ

1

k2

(

δij −
kikj

k2

) ∞
∑

n=0

(−)n

[

k2n
k···

(2n)!
F̃

c(2n)
j,k··· (k) − k2n+1

k···

(2n + 1)!
F̃

s(2n+1)
j,k··· (k)

]

, (61)

(ũs
m)i (k) =

1

µ

1

k2

(

δij −
kikj

k2

) ∞
∑

n=0

(−)n

[

k2n
k···

(2n)!
F̃

s(2n)
j,k··· (k) +

k2n+1
k···

(2n + 1)!
F̃

c(2n+1)
j,k··· (k)

]

, (62)

TABLE I: Number of configurations in the ensemble used in
the simulations.

number of particles Np number of configurations Nc

10 – 16 2048

17 – 79 1024

80 – 150 512

160 256

where F̃ c(k) and F̃ s(k) are the cosine and sine coeffi-
cients of the force moment. Equation (60) is equivalent
to (8.2) in the paper by Tanksley and Prosperetti.29

Note that the coefficient with k = 0 should be dropped
in order for the velocity to be non-singular.30,37 This
specifies the frame of reference as the volume aver-
age of the mixture velocity in the fundamental cell is
then zero. This is the physical meaning of Batchelor’s
renormalization.1

C. Ensembles

Our interest lies in quantities corresponding to large
(ideally infinite) systems, for which k → 0. For each value
of φ, therefore, it is necessary to construct ensembles
corresponding to different values of k so as to be able to
calculate this limit. This requires the consideration of
ensembles with different number of particles Np as

ka =
2πa

L
=

(

6π2φ

Np

)1/3

. (63)

For φ between 1 and 50%, we construct ensembles of
between 256 and 2048 configurations with 10 to 160 par-
ticles. Statistical errors in the ensemble averages (2) de-
crease rather slowly as 1/

√
Nc. Considerations of com-

putational time force us to strike a compromise between
number of configurations and residual statistical error,
especially for large numbers of particles. Table I shows
the numbers of configurations we use in the different en-
sembles.

The ensembles are constructed as follows. For volume
fractions less than 50%, we start by randomly arranging
the particles in the cell making sure that no overlap oc-
curs, and subject them to a random walk displacing each
one of them taking care to avoid overlaps at each step.
After 100Np steps per particle, we store the resultant
configuration as a member of the ensemble. The initial
configuration is regenerated every time. For φ = 50%,
we start by arranging the Np particles in a regular array
and execute 1000Np random steps after which we store
the resulting configuration. This configuration is used as
the starting condition for generating the next one. By
repeating this procedure, we construct ensembles of Nc

configurations.

The static structure factor for hard-spheres in infinite
space is isotropic and is approximated by the analytical
solution of the Percus-Yevick integral equation38–40 as

SPY (k) = (1 − n0c̃(2ka))
−1

, (64)

where n0 is the number density, and c̃(2ka) is the Fourier
transform of the direct (isotropic) correlation function
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FIG. 3: Comparison between the structure factor given by
the Percus-Yevick solution SPY (k) in (64) (solid line) and
S(k) numerically calculated from (69) from the configurations
used in the present work for φ = 0.15. The solid circles are
calculated with k = 2π/L, and the open circles are with
higher spatial modes.

given by

c̃(X) = −32πa3

X3
[α (sin X − X cos X)

+
β

X

{

2X sinX − (X2 − 2) cos X − 2
}

+
γ

X3

{(

4X3 − 24X
)

sin X

−
(

X4 − 12X2 + 24
)

cos X + 24
}]

, (65)

where X = 2ka, and

α(φ) =
(1 + 2φ)2

(1 − φ)4
, (66)

β(φ) = −6φ
(1 + 1

2φ)2

(1 − φ)4
, (67)

γ(φ) =
φ

2

(1 + 2φ)2

(1 − φ)4
. (68)

Figure 3 shows a comparison between SPY (k) and the
structure factor S(k) for our ensembles for a volume frac-
tion of 15%. We calculate this quantity according to

S(k) =
V 2

Np
〈ñ(k)ñ(−k)〉0, (69)

considering not only k = 2π/L, but also the higher modes√
2k,

√
3k, 2k, and so on. For each wave vector, the point

plotted in Fig. 3 is the average over all the different direc-
tions of the wave vector. This result shows that, although
our ensembles are not strictly isotropic, they give rise to
a structure factor essentially indistinguishable from the
Percus-Yevick distribution in infinite space in the wave
vectors range greater than 2π/L. In particular, one may

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2
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0.15
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0.45
0.50

FIG. 4: The structure factor Ss(k) calculated according to
(70) for the smallest wave number for each cell for all ensem-
bles used in this study with volume fraction φ between 0.01
and 0.50 and particle number Np between 10 and 160. The
lines are the Percus-Yevick solution SPY (k) in (64) for each
volume fraction.

therefore expect that the linear sinusoidal non-uniformity
with the smallest wave number k is not affected by the
periodicity.

For all our ensembles, Fig. 4 shows the unscaled non-
uniform averages of ñs(k) for the case of a linear sinu-
soidal non-uniformity. According to (30), this quantity
is defined by

Ss(k) =
V 2

2Np
〈(ñs(k))

2〉0. (70)

Every point represents an ensemble average for given val-
ues of φ and Np. A comparison of this figure with Fig.
3 in the previous paper27, shows that, while some results
for volume fractions φ = 0.15, 0.25, and 0.35 have been
reused as mentioned before, many more ensembles have
been added since then. Note that the universal ensemble
is translationally invariant, so that the average 〈(ñc)

2〉0 is

equal to 〈(ñs)
2〉0 within the statistical accuracy. There-

fore, Ss(k) in (70) is equal to S(k) in (69). In the figure,
we also plot SPY (k) as a reference. This shows that the
relative error of Ss(k) from SPY (k) is independent of φ
and around 6 to 8 %.

In the calculations that follow, we use this numerically
computed Ss(k) as the structure factor in the definition
of the non-uniform probability weights in (28).

D. Averaging and parameterization

Here we show how to evaluate the non-uniform ensem-
ble averages with the universal ensembles for each one of
the quantities defined above.
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1. Field quantities

The Fourier coefficients of the mixture velocity defined
by (61) and (62) are averaged according to (29) for each
ensemble. Since the coefficient with k = 0 has been
dropped, there is no uniform part and, since the mixture
is incompressible as a whole,

∇ · um = 0, (71)

as is obvious from (60). This implies that the parallel
component of the non-uniform part of um should be zero.
The numerical results also indicate that the cosine coeffi-
cient of the non-uniform parts for the force problem, and
the sine coefficients for torque and shear problems, are
less than 10% relative to the non-zero coefficients at most.
This is of the order of the statistical error which may be
expected, and we therefore assume them to vanish. Upon
retaining only the non-zero terms, in the notation of the
preceding section, we then have

〈ũs
m(k)〉s = [um]

⊥
F W⊥

F , (72)

〈ũc
m(k)〉s = [um]

⊥
T W⊥

T , (73)

〈ũc
m(k)〉s = [um]

⊥
E W⊥

E , (74)

from which

〈um − u∞〉(x) = ε sin (k · x) [um]
⊥
F W⊥

F

+ε cos (k · x) [um]
⊥
T W⊥

T

+ε cos (k · x) [um]
⊥
E W⊥

E . (75)

The three parameters denoted by [ ] in the parameteriza-
tions (72) to (74) are the building blocks of the analysis
of non-uniform suspensions given in the next section.

The angular velocity of the mixture, Ωm, is

Ωm =
1

2
∇ × um. (76)

Substituting (75), we have

〈Ωm − 1

2
∇ × u∞〉(x) = ε cos (k · x)

k

2
[um]

⊥
F ω⊥

F

+ ε sin (k · x)
k

2
[um]

⊥
T ω⊥

T

− ε sin (k · x)
k

2
[um]

⊥
E ω⊥

E .(77)

2. Particle quantities

In order to calculate the average of the particle velocity
U , for each configuration, we find its Fourier coefficients
Ũ(0), Ũ c, and Ũ s according to (23) and (24), and we

average them over the configurations to find 〈Ũ(0)〉0,
〈Ũ c〉s, and 〈Ũ s〉s. From the numerical results, the uni-
form parts for the torque and shear problems, the cosine
coefficient of the non-uniform part for the force problem,

and the sine coefficients for the torque and shear prob-
lems vanish. Upon using parameterizations in the form
(50), we have then

〈U − U∞〉P (x) = [U ]
0
F WF

+ε sin (k · x)
(

[U ]
‖
F W

‖
F + [U ]

⊥
F W⊥

F

)

+ε cos (k · x) [U ]
⊥
T W⊥

T

+ε cos (k · x)
(

[U ]
‖
E W

‖
E + [U ]

⊥
E W⊥

E

)

. (78)

Similarly, for the particle angular velocity Ω, we have

〈Ω − Ω
∞〉P (x) = [Ω]

0
T WT

+ε cos (k · x) [Ω]
⊥
F ω⊥

F

+ε sin (k · x)
(

[Ω]
‖
T ω

‖
T + [Ω]

⊥
T ω⊥

T

)

+ε sin (k · x) [Ω]
⊥
E ω⊥

E . (79)

Note that 〈U∞〉P 〈Ω∞〉P are the particle averages of the
moments of the imposed velocity defined in (53) and in
(54).

3. Slip velocities

The translational slip velocity 〈u∆〉 is the average
translational velocity of the particles relative to the mix-
ture:

〈u∆〉 = 〈U − U∞〉P − 〈um − u∞〉. (80)

Upon inserting the expression (55) for U∞(α) into (22)
and then into (25) to calculate 〈U∞〉P , because of the
presence of the factor δ (x − xα), we simply find

〈U∞〉P =

(

1 +
a2

6
∇2

)

u∞(x) . (81)

Furthermore, in the three cases studied in this paper,
u∞(x) is either a constant or a linear function of x so
that the second term can be dropped with the result

〈u∆〉 = 〈U〉P − 〈um〉. (82)

From the parameterizations of the particle velocity in
(78) and of the mixture velocity in (75), we have

〈u∆〉(x) = [u∆]
0
F WF

+ε sin (k · x)
(

[u∆]
‖
F W

‖
F + [u∆]

⊥
F W⊥

F

)

+ε cos (k · x) [u∆]
⊥
T W⊥

T

+ε cos (k · x)
(

[u∆]
‖
E W

‖
E + [u∆]

⊥
E W⊥

E

)

, (83)
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where

[u∆]
0
F = [U ]

0
F , (84)

[u∆]
‖
F = [U ]

‖
F , (85)

[u∆]
⊥
F = [U ]

⊥
F − [um]

⊥
F , (86)

[u∆]
⊥
T = [U ]

⊥
T − [um]

⊥
T , (87)

[u∆]
‖
E = [U ]

‖
E , (88)

[u∆]
⊥
E = [U ]

⊥
E − [um]

⊥
E . (89)

The slip angular velocity Ω∆ is defined similarly by

〈Ω∆〉 = 〈Ω − Ω
∞〉P − 〈Ωm − 1

2
∇ × u∞〉. (90)

which, in the present case, by the same argument as be-
fore, becomes

〈Ω∆〉 = 〈Ω〉P − 〈Ωm〉. (91)

From the parameterizations of the angular particle veloc-
ity in (79) and of the angular mixture velocity in (77),

〈Ω∆〉(x) = [Ω∆]
0
T WT

+ε cos (k · x) [Ω∆]
⊥
F ω⊥

F

+ε sin (k · x)
(

[Ω∆]
‖
T ω

‖
T + [Ω∆]

⊥
T ω⊥

T

)

+ε sin (k · x) [Ω∆]
⊥
E ω⊥

E , (92)

where

[Ω∆]
⊥
F = [Ω]

⊥
F − k

2
[um]

⊥
F , (93)

[Ω∆]
0
T = [Ω]

0
T , (94)

[Ω∆]
‖
T = [Ω]

‖
T , (95)

[Ω∆]
⊥
T = [Ω]

⊥
T − k

2
[um]

⊥
T , (96)

[Ω∆]
⊥
E = [Ω]

⊥
E +

k

2
[um]

⊥
E . (97)

V. RESULTS

We now present and discuss the results of the multi-
particle simulations in the light of the framework estab-
lished in the previous sections. We focus on the the slip
velocity 〈u∆〉, the mixture velocity 〈um − u∞〉, and the
slip angular velocity 〈Ω∆〉. These quantities are param-
eterized as in (83), (75), and (92), respectively, and we
will examine the numerical coefficients in these parame-
terizations denoted by [ ]. These coefficients depend on
both the wave vector k and the volume fraction φ.

A. Velocities for the force problem

We start by considering the velocities in the force prob-
lem.
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FIG. 5: Uniform part [U ]0F of the particle velocity for the force
problem as a function of k. The points are the numerically
calculated ensemble averages and the lines least-squares fits.
For this problem, [U ]0F equals the uniform part [u∆]0F of the
slip velocity.
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coefficients of [U]0F: A
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FIG. 6: Coefficients A and B of the linear fit (98) to [U ]0F
as functions of the volume fraction φ. A coincides with the
hindrance function U(φ) in (99) and B is the effect of the pe-
riodicity of the system. Solid and dashed lines are the fitting
(100) for A and the model (101) for B, respectively.

Figure 5 shows, for different volume fractions between
1% and 50%, straight-line fits to the coefficients of the
parameterization of the uniform part of 〈U − U∞〉P :

[U ]
0
F (k, φ) = A[U ]0

F + kB[U ]0
F . (98)

The fitting is done by least squares. The error with which
(98) approximates the numerical results is smaller than

the symbols used to graph A[U ]0
F and B[U ]0

F in Fig. 6.

The constant term A[U ]0
F is the hindrance function for

sedimentation, U(φ):

A[U ]0
F = lim

k→0
[U ]

0
F = U(φ). (99)

Therefore, A[U ]0
F is the sedimentation velocity extrapo-

lated to infinite cell size. As Fig. 6 shows, it is well fitted
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FIG. 7: Comparison of (µr − 1)/φ as calculated directly by
averaging the stresslets for the uniform shear problem (line)
and from the suggestion (101) of Ref. 31.

by

U(φ) = (1 − φ)6.55−3.4φ. (100)

Note that our numerical solution is affected by the trun-
cation of the multipole expansion because we solve the
many-body problems including multipoles only up to the
fifth order.

The coefficient B(φ) reflects the effect of the
periodicity10,15,31 which arises from the difference be-
tween the sedimentation velocities of random and regular
arrays.41 Several heuristic arguments have been proposed
leading to a relation between B and µr, the effective vis-
cosity of the suspension normalized by the fluid viscosity.
Mo and Sangani31 propose a relation which, in our nota-
tion, is

B[U ]0
F = − 1.7601

(6π2)
1/3

S(0)

µr
, (101)

in which S(0) is the structure factor for k = 0. This
is also plotted by the dashed line in Fig. 6, where µr is
evaluated from the uniform shear problem as the average
stresslets in the standard way.10,15,31 Although the model
(101) captures the qualitative behavior of B, there is a
significant difference between (µr − 1)/φ as calculated
directly and the value deduced from (101). To better
illustrate this difference, Fig. 7 shows (µr − 1)/φ calcu-
lated from (101), which, in the dilute limit, should tend
to the Einstein coefficient 5/2 multiplying the O(φ) term
of µr. A similar difference can be observed in Fig. 6 of
our previous paper.27 These results suggest that the re-

lationship between µr and B[U ]0
F is more complex than

(101) would imply.

The coefficients for the non-uniform parts of 〈U −

-0.5

-0.4
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 0  0.1  0.2  0.3  0.4  0.5

volume fraction φ

φ (dU/dφ)
[u∆]||F
[u∆]⊥F

FIG. 8: Comparison among φ (dU/dφ), [u∆]
‖
F , and [u∆]⊥

F
for a

non-uniform suspension. The three quantities should coincide
if the relation between the force on the particles and the slip
velocity did not contain a Faxén-type correction.

U∞〉P and 〈um − u∞〉 can be fitted as

[U ]
‖
F = A[U ]

‖
F + kB[U ]

‖
F , (102)

[U ]
⊥
F =

1

k2
D[U ]⊥

F + A[U ]⊥
F + kB[U ]⊥

F , (103)

[um]
⊥
F =

1

k2
D[um]⊥

F + A[um]⊥
F + kB[um]⊥

F . (104)

For k → 0, we encounter in the terms D of the perpendic-
ular components the same divergence found in Ref. 27.
This arises from the lowest order multipole in (60). As
noted in Ref. 27, this divergence is physical in that it is
due to the fact that, as k → 0, the width (and therefore
the weight) of the heavier and lighter bands of mixture
increases, while the shear force which retards their fall
does not. These two diverging terms are found to be
equal within our numerical accuracy and therefore can-
cel upon forming the perpendicular component of the slip
velocity, which is therefore given by

[u∆]
⊥
F = A[u∆]⊥

F + kB[u∆]⊥
F . (105)

The coefficients A[u∆]⊥
F and B[u∆]⊥

F are calculated by fit-
ting a linear k-dependence to the difference (86).

In order to understand these results, the simplest hy-
pothesis is that the slip velocity is given by the hindrance
function evaluated at the local volume fraction. For the
linear sinusoidal non-uniformity (27), we would then have

U(φ) = U(φ0) + φ0
dU

dφ
ε sin (k · x) . (106)

Figure 8 shows [u∆]
‖
F , [u∆]

⊥
F , and φ (dU/dφ), where the

derivative of the hindrance function is evaluated by nu-
merical differentiation of the results for [u∆]

0
F . We see

that the simple hypothesis works quite well for the par-
allel component, but not for the perpendicular one.
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FIG. 9: Coefficient C(φ) of the Faxén-type correction of the
relation between force on the particles and slip velocity de-
fined in (109). The line is the dilute-limit value 1/6. The
fitting error bars are also shown.

To address this difference, it is useful to remember
Faxén’s law for a single particle

F α

6πµa
= Uα −

(

1 +
a2

6
∇2

)

u′ (xα) , (107)

where u′ is the velocity field except for the contribution
of the particle α. It is reasonable to expect a similar
contribution in the present case. Since the mixture ve-
locity um only has a perpendicular component, this con-
tribution would vanish for the parallel one, which would

account for the good fit of [u∆]
‖
F and (106).

We thus introduce a coefficient C(φ; k) by

U(φ)
F0

6πµa
= 〈u∆〉 − C(φ; k)a2∇2〈um〉. (108)

Physically, this equation represents an extension of
Faxén’s law (107) and of the dilute-limit theory by
Geigenmüller and Mazur42 to finite volume fraction. Ex-
trapolating to large system size, from the previous re-
sults, we find

C(φ) = lim
k→0

1

k2a2 [um]
⊥
F

(

[u∆]
‖
F − [u∆]

⊥
F

)

. (109)

Figure 9 shows the values of C(φ) calculated from this ex-
pression together with the reference value 1/6 suggested
by Faxén’s law (107). The bars indicate the fitting error
of the least-squares procedure. Convergence is poor at
low volume fractions where, due to the increased avail-
able phase-space volume, a large number of configura-
tions is necessary for a good statistical averaging. At
high volume fractions, the error is possibly related to the
truncation of the multipole expansion. Nevertheless, we
find a general consistency between our results and (107).
It should be stressed that, since C(φ) is independent of
k, by superposition and linearity, the result (108) holds
not only for the special form (26) of n(x) but, to order
(a/L)2, for any other weak non-uniformity as well.
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FIG. 10: Hindrance function for rotation A = Ω(φ) as a func-
tion of the volume fraction.

The Faxén term in Eq. (108) was also studied in our
previous paper,22 where Fig. 10 is, in the present nota-
tion, C(φ)/U(φ). The present results are consistent with
the earlier ones except for the last point in the latter cor-
responding to φ = 0.35. Due to the smaller number of
simulations conducted for that earlier study, it is likely
that that point is in error.

In conclusion, we have found that the averages of the
slip velocity are given by

[u∆]
0
F = U(φ), (110)

[u∆]
‖
F = φ

dU

dφ
, (111)

[u∆]
⊥
F + C(φ)k2[um]⊥F = φ

dU

dφ
. (112)

Feuillebois20 studied the sedimentation of a dilute sus-
pension exhibiting a sinusoidal as well as a step-like non-
uniformity taking only two-body interactions into ac-
count. In the dilute limit, his results are consistent with
the present ones.27

B. Angular velocities for the torque problem

For fixed φ, the uniform part of the particle angular
velocity has essentially no k dependence and is well fitted
by a constant:

[Ω]
0
T (k, φ) = A[Ω]0

T = Ω(φ), (113)

where Ω(φ) is the hindrance function for the torque prob-

lem. Figure 10 shows A[Ω]0
T , which is well fitted by

Ω(φ) = (1 − φ)1.50−0.41φ. (114)

The non-uniform parts of Ω can be fitted by

[Ω]
‖
T = A[Ω]

‖
T + k2C [Ω]

‖
T , (115)

[Ω]
⊥
T = A[Ω]⊥

T + k2C [Ω]⊥
T . (116)
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FIG. 11: Comparison among φ (dΩ/dφ), [Ω∆]
‖
T , and [Ω∆]⊥

T
in

a non-uniform suspension. The very close similarity among
the three quantities implies that the mean torque is directly
related to the slip angular velocity without a Faxén-type cor-
rection.

As expected, there is no diverging term here. The mix-
ture contribution to the angular velocity Ωm is

[Ωm]
⊥
T =

k

2
[um]

⊥
T =

k2

2

(

D[um]⊥
T

k2
+ A[um]⊥

T

)

. (117)

The leading terms of Ω and Ωm are now different and no
cancellation occurs in the calculation of the slip angular
velocity, which is

[Ω∆]
⊥
T = A[Ω∆]⊥

T + k2C [Ω∆]⊥
T . (118)

If the local slip angular velocity were only dependent
on the local value of the rotational hindrance function,
one would expect that

Ω(φ)T0 = 8πµa3〈Ω∆〉 (119)

where

Ω(φ) = Ω(φ0) + φ0
dΩ

dφ
ε sin (k · x) (120)

so that

[Ω∆]
0
T = Ω(φ), (121)

[Ω∆]
‖
T = [Ω∆]

⊥
T = φ

dΩ

dφ
, (122)

which is tested numerically in Fig. 11. Unlike the force
case, the numerical results evidently support the conjec-
ture (119), which conforms with the conventional Faxén
law for the torque on a single particle. The same argu-
ment presented before in connection with (108) can be
repeated to conclude that (119) holds to order (a/L)2

for any weak spatial non-uniformity.

-0.1

 0

 0.1

 0  0.1  0.2  0.3  0.4  0.5

volume fraction φ

A of [u∆]⊥T
[u∆]||E
[u∆]⊥E

FIG. 12: Coefficient A of the linear term in k in the fits
of the numerical results for [u∆]⊥T , [u∆]

‖
E , and [u∆]⊥E for the

non-uniform case. Note that, while these quantities would all
vanish for a uniform suspension, they are clearly non-zero in
the presence of a non-uniformity. The fitting error bars are
also shown.

C. Further examples of the effect of non-uniformity

For uniform suspensions, the slip velocity under an ap-
plied torque, the slip angular velocity for sedimentation,
and both slip an slip-angular velocities for an imposed
shear all vanish. The situation is different in the pres-
ence of spatial non-uniformities as we now show.

The computed average velocities for the torque prob-
lem can be fitted as

[U ]
⊥
T = k

(

1

k2
D[U ]⊥

T + A[U ]⊥
T

)

, (123)

[um]
⊥
T = k

(

1

k2
D[um]⊥

T + A[um]⊥
T

)

. (124)

It is shown analytically in 27 that

lim
φ→0

D[um]⊥
T = 3φ. (125)

Similarly to the force problem, the diverging terms of U
and um are identical, and the leading term of the slip
velocity is O(k):

[u∆]
⊥
T = kA[u∆]⊥

T . (126)

The coefficient A[u∆]⊥
T is shown by the squares in Fig. 12.

The error bars inscribed in the symbols give an idea of

the fitting error for this quantity. A[u∆]⊥
T is found to be

rather small, but systematically non-zero.

For the shear problem, the parallel component of U
can be fitted as

[U ]
‖
E = kA[U ]

‖
E , (127)
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FIG. 13: Coefficient A of the linear term in k in the fits of the
numerical results for [Ω∆]⊥F and [Ω∆]⊥E for the non-uniform
case. While these quantities would all vanish for a uniform
suspension, they are clearly non-zero in the presence of a non-
uniformity. The fitting error bars are also shown.

and the perpendicular components of U and um as

[U ]
⊥
E = k

(

1

k2
D[U ]⊥

E + A[U ]⊥
E

)

, (128)

[um]
⊥
E = k

(

1

k2
D[um]⊥

E + A[um]⊥
E

)

, (129)

where, for D[um]⊥
E Ref. 27, shows that

lim
φ→0

D[um]⊥
E = 5φ. (130)

The diverging terms again cancel upon forming the slip
velocity and the leading term of this quantity is O(k):

[u∆]
⊥
E = kA[u∆]⊥

E . (131)

The A coefficients of the parallel and perpendicular com-
ponents are also shown in Fig. 12 by the circles and trian-
gles, respectively. The fitting error bars are inscribed in
the symbols. Again, both of these quantities are clearly
non-zero.

The average angular velocity coefficients in the force
problem can be fitted as

[Ω]
⊥
F = k

(

D[Ω]⊥
F

k2
+ A[Ω]⊥

F + kB[Ω]⊥
F

)

, (132)

[Ωm]
⊥
F =

k

2

(

D[um]⊥
F

k2
+ A[um]⊥

F + kB[um]⊥
F

)

,(133)

where we have diverging terms which, again, are equal,
so that the leading order of the slip angular velocity is
O(k):

[Ω∆]
⊥
F = k

(

A[Ω∆]⊥
F + kB[Ω∆]⊥

F

)

. (134)

The circles in Fig. 13 shows A[Ω∆]⊥
F with the fitting error

bars.

The corresponding results for the problem take the
form

[Ω]
⊥
E = k2

(

D[Ω]⊥
F

k2
+ A[Ω]⊥

F

)

, (135)

[Ωm]
⊥
E = −k

2

(

D[um]⊥
E

k2
+ A[um]⊥

E

)

, (136)

with identical diverging terms so that the leading order
of the slip angular velocity is O(k2):

[Ω∆]
⊥
E = k2A[Ω∆]⊥

E . (137)

Figure 13 shows this A coefficient with the fitting error
bars.

These results show that, for non-uniform suspensions,
the slip velocity 〈u∆〉 is non-zero even when no force
acts on the particles, and the slip angular velocity 〈Ω∆〉
is non-zero even in the absence of torques. This behavior
is quite different from that encountered in the case of uni-
form suspensions and it suggests that uniform-suspension
simulations can only give a partial view of the general
behavior of a suspension. In particular, the characteri-
zation of non-uniform suspensions requires the introduc-
tion of additional “effective properties” (e.g., the Faxén
coefficient) with respect to those sufficient to describe a
uniform suspension. This issue has been partially ad-
dressed in Ref. 22 and will be pursued further in future
publications.

VI. CONCLUSIONS

In the first part of this paper we have shown how aver-
ages corresponding to a spatially non-uniform statistical
ensemble can be calculated on the basis of a uniform one.
The method consists in attributing to each realization
of the uniform ensemble a suitable weight, which is con-
structed explicitly starting from an arbitrarily prescribed
macroscopic particle number density distribution.

We have applied this general theory to the simple case
of a weak sinusoidal non-uniformity of the number den-
sity distribution of equal spheres in a viscous suspen-
sion for three mobility problems: sedimentation, applied
torque, and imposed bulk shear flow. In spite of the spe-
cial form of the non-uniformity, we have shown that the
results are valid in general to second order in the ratio
(a/L)2, where a is the particle radius and L the macro-
scopic length scale.

We have found that, in a non-uniforms suspension, the
average slip angular velocity, i.e. the relative angular
velocity between the particles and the mixture, can be
calculated by simply evaluating the hindrance function
for rotation in correspondence of the local concentration,
as in Eq. (119):

〈Ω〉P − 1

2
∇ × 〈um〉 = Ω(φ)

T0

8πµa3
, (138)
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where 〈Ω〉P is the average particle angular velocity, 〈um〉
is the mixture volumetric flux, Ω(φ) is the hindrance
function for rotation shown in Fig. 10 and fitted as a
function of φ by the expression (114), and T0 is the ex-
ternal torque applied to the particles.

An analogous relation for the translational slip veloc-
ity, however, does not hold. This quantity contains a
finite-size correction proportional to ∇2〈um〉, just as in
the case of the familiar Faxén law for a single particle:

〈U〉P − 〈um〉 = C(φ)a2∇2〈um〉 + U(φ)
F0

6πµa
(139)

in which 〈U〉P is the mean particle translational velocity,
U(φ) is the (translational) hindrance function, and F0 the
external force applied to the particles. The dependence
of the coefficient C(φ) on the volume fraction is shown in
Fig. 9 and, within our numerical accuracy, is consistent
with the usual value 1/6 as the particle volume fraction
tends to zero.

The results (138) and (139) represent a generaliza-
tion of the single-particle Faxén laws of Stokes flow to
a spatially non-uniform suspension. The spatial non-
uniformity that we have included in our study is limited
to the particle number density, i.e. the one-body distri-
bution function.

Acknowledgments

We wish to acknowledge the support by DOE grant
DE-FG02-99ER14966.

APPENDIX A: DEFINITIONS FOR THE

GENERALIZED MOBILITY PROBLEM

The generalized mobility equation (52) is derived from
the integral equation (57).

The velocity and force moments are defined by

U
(n)

i,k···(α) =
1

4πa2

∫

Sα

dS(y) (y − xα)
n
k··· vi(y),(A1)

F
(n)
j,k···(α) = −

∫

Sα

dS(y) (y − xα)
n
k··· fj(y). (A2)

E∞, and U ∞ are defined in terms of u∞(x) by

E
∞(α) =

1

4πa2

∫

Sα

dS(y)
3

2a2
[(y − xα) u∞(y)

+u∞(y) (y − xα)] , (A3)

U
∞(n)(α) =

1

4πa2

∫

Sα

dS(y) (y − xα)
n

u∞(y). (A4)

Corresponding expressions for U∞, Ω
∞ were presented

earlier in (53) and (54).
If, as in the cases considered in this paper, the imposed

flow is given by

u∞(x) = U0 + Ω
0 × x + E

0 · x, (A5)

then,

U∞(α) = U0 + Ω
0 × xα + E

0 · xα, (A6)

Ω
∞(α) = Ω

0, (A7)

E
∞(α) = E

0, (A8)

U
∞(α) = 0. (A9)
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