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It has recently been shown that the average stress in a viscous suspension consists of a symmetric
traceless component, and an antisymmetric component expressed in terms of a polar and an axial
vector. In this paper, closure relations for these quantities are derived by means of numerical
ensemble averaging following a systematic procedure. By the use of a suitably biased probability
distribution, the ensemble is made to describe a spatially non-uniform system. Several new terms,
which are identically zero for a homogeneous system, are identified.

I. INTRODUCTION

The central problem in the modeling of disperse multi-
phase flows by means of averaged equations is the closure
of the terms which arise from the averaging procedure ap-
plied to the exact microscopic equations (see e.g. Refs.
1–4). Such closure requires that part of the information
lost upon averaging be reintroduced to a degree of ap-
proximation sufficient to capture the physics and result
in a well-posed mathematical model.

The problem has been recognized for a long time and
many attempts at its solution can be found in the litera-
ture. A representative list may include the early paper by
Anderson and Jackson5 dealing with the formulation of a
closed model for fluidized beds, the more recent work on
the same topic described by Sundaresan6, work by Koch,
Sangani and collaborators devoted to gas-solid suspen-
sions and bubbly liquids (see e.g. Refs. 7–11), the studies
by Brady and co-workers on suspension rheology (see e.g.
Refs. 12,14–16), and many others. While the ultimate
goal of a general model capable of describing a variety of
flow situations is still distant, considerable progress has
been achieved by coupling analysis with the detailed com-
putational simulation of flows with suspended particles.
With few exceptions (see e.g. Refs. 17,18), most of the
work has focused on the limit cases of potential flow (see
e.g. Refs. 19–22) and Stokes flow (see e.g. Refs. 23–26),
which seem to be the most amenable to the development
of a closed model. While idealized, there is hope that the
insight gained on these systems might shed useful light
for the solution of the problem at intermediate Reynolds
numbers.

In some recent papers27–30 we have considered this
problem, again in the Stokes flow limit, pointing out
that the information obtainable from the simulation of
spatially uniform systems can reflect only partially the
full structure of the averaged equations. For example, in
a uniform sheared suspension, on average the particles
move with the same velocity as the mixture, which does
not permit to see the effect of any closure term propor-
tional to the average relative velocity of the two. Sim-
ilarly, it is impossible to test the applicability of an ef-
fective viscosity calculated from the shear problem to a

different flow situation, such as sedimentation, if spatial
uniformity causes all spatial gradients to vanish.

To be sure, different flows give rise to different mi-
crostructures, which will then have an impact on the
effective properties and closure relations (see e.g. Ref.
13,14). For this reason, the pursuit of a single closed
system of averaged equations applicable to many differ-
ent flow situations may be to some extent futile if a high
degree of fidelity is pursued. However, one may look at
the general class of problems from another angle. The
development of closure relations which, while perhaps
not exactly valid for any flow, still manage to capture
in some generic sense several important features of many
flows, might be a perhaps less ambitious but ultimately,
in practice, more fruitful goal.

It is such a goal which we pursue in this paper: we use
spatially periodic ensembles of hard spheres in a cubic
fundamental cell to derive closure relations for suspen-
sions of equal spheres in Stokes flow. A distinct fea-
ture of our approach is the ability to build into this
ensemble (by post-processing, as it were) a prescribed
spatial non-uniformity in the particle number density
distribution.30,31 In this way, we are able to discern at
least some of the effects of non-uniformity alluded to be-
fore. One major such effect is the appearance of an an-
tisymmetric component of the stress tensor, entirely due
to spatial non-uniformity, even in the absence of couples
acting on the particles.

A large fraction of the contemporary work on suspen-
sion theory has focused on non-Newtonian rheological
properties (see e.g. Refs. 15,32). A great deal of atten-
tion has been paid to the anisotropy of the pair distri-
bution function, assuming a spatially homogeneous par-
ticle number density. In the present paper we adopt a
complementary viewpoint, focusing on non-uniformities
of the particle number density while disregarding the
anisotropy of the pair distribution function. We be-
lieve that our techniques can be extended to deal with
the complete problem in which both the particle num-
ber density is non-uniform and pair distribution function
anisotropic.

The logic to be followed in our study is straightforward
in principle. We start by choosing the fundamental vari-
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ables of the theory as the volume fraction, mixture veloc-
ity, relative particle-mixture (or “slip”) velocity and rel-
ative particle-mixture angular velocity. Considerations
of Galilean invariance, parity, linearity, and equipresence
dictate the most general form relating the quantity to be
closed – e.g., the stress – to quantities derived from the
fundamental variables of the theory – e.g., the rate of
strain of the mixture velocity. In general, the closure re-
lation consists of a linear combination of such quantities
the coefficients of which – e.g. the effective viscosity –
depend on the volume fraction. At this point, the quan-
tity to be closed is calculated directly from its definition
by means of numerical ensemble averaging for some pre-
scribed flows, and so are the other quantities appearing
in the closure. Matching the two sides of the closure
relation determines then the unknown volume-fraction-
dependent coefficients. In this work, we use three dif-
ferent physical situations: an equal force applied to each
particle, an equal torque applied to each particles, and a
uniform shear imposed on the suspension.

Results of a nature similar to the present ones were
presented earlier in Refs. 27 and 28. With respect to that
work, the results of the present paper have the advantage
of being based on the substantially improved theoretical
framework developed in Ref. 33 (see e.g the comments at
the end of section IV), of being numerically much more
accurate thanks to a significantly increased number of
simulations, and of covering a much greater number of
particle volume fractions.

II. THE PARTICLE STRESS

We will use as our starting point an expression for the
particle stress developed in Ref. 33. That work consid-
ered a system of N equal spheres suspended in a fluid oc-
cupying a cubic domain subjected to periodicity bound-
ary conditions. A closed form expression was obtained
for the mean mixture volumetric flux um and mixture
pressure pm in terms of ensemble averages of multipole
coefficients appearing in Lamb’s general solution for the
Stokes flow past a sphere.34–36 The situation considered
was general and, in particular, did not assume a spatial
homogeneity of the ensemble used to calculate the aver-
age. Upon calculating the gradient of pm and the Lapla-
cian of um, the following result was found (Eq. (10.3) of
Ref. 33):

−∇pm + µ∇2
um = −µ [∇ · S + ∇ × (R − ∇ × V )]

+
1

v

∫

|r|≤a

d3r n(x + r)F (x + r) .(1)

Here S is a traceless symmetric two-tensor, R an axial
vector, V a polar vector, n the particle number density,
and F the average force exerted by the fluid on the par-
ticles, each one with radius a and volume v = 4

3πa3. For
a pure fluid with viscosity µ, the right-hand side of this
equation would vanish (provided the body force is con-
servative and absorbed in the pressure pm). The terms

in the right-hand side must therefore be identified with
the effect of the particles on the momentum balance of
the mixture. If we combine the term containing um with
the remaining terms, we find the divergence of a stress

1

µ
Σ = 2Em + S + ε · (R − ∇ × V ) , (2)

in which ε is the alternating tensor and

Em =
1

2

[

∇um + (∇um)
†
]

, (3)

is the mixture rate-of-strain tensor. This expression ex-
plicitly shows that the stress tensor contains two anti-
symmetric contributions. It is possible to show that, for
a uniform suspension,13,37

R = −
1

2µ
n

∮

|r|=a

dS r × [σ · n] (4)

where the overline denotes the ensemble average, σ is
the fluid stress, and n the outwardly directed unit nor-
mal at the particle surface. For couple-free particles in
Stokes flow, this term will therefore vanish. However,
as shown in section IV below, in the case of spatial
non-uniformities, the expression of R contains additional
terms that do not vanish even in the case of couple-free
particles.

In the uniform case, it can be shown that the new term
V is given by37

V =
1

µ
n

∮

|r|=a

dS (I − nn) · [σ · n] , (5)

in which I is the identity two-tensor, and is therefore pro-
portional to the surface-average tangential traction on
the particle surface.

As shown in Ref. 33 and summarized in the Appendix,
the exact expressions of S, R, and V involve an infinite
series of multipole coefficients, which reflect the finite size
of the particles and therefore, ultimately, the non-local
nature of an exact theory. The expressions (4) and (5)
are the first terms of the respective infinite series. In
this paper we will limit our consideration to the next
few terms, which embody a low-order non-local correc-
tion. We may also note that, to first order in the particle
volume fraction, it is possible to show that

S = 5φEm (6)

with the particle volume fraction given by

φ(x) =

∫

|r|≤a

d3r n(x + r) (7)

so that one recovers the well-known Einstein viscosity
correction,38 and that

R = 3φΩ∆, (8)
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V =
3

10
φ u∆ +

1

7
a2

Em · ∇φ −
11

140
φa2∇2

um, (9)

where u∆ = U − um is the slip translational velocity,
defined by the difference between the volumetric flux um

and the average particle translational velocity U , and
Ω∆ = Ω − (1/2)∇ × um the slip angular velocity. The
goal of this paper is to extend these dilute-limit results
to the case of finite volume fraction by carrying out nu-
merical ensemble averages.

III. THE SYMMETRIC PART OF THE STRESS

We assume that the contributions to the stress can be
expressed in terms of the local particle volume fraction
φ, mixture velocity um, the average inter-phase (or slip)
velocity u∆, and the average inter-phase angular velocity
Ω∆. Since S is a symmetric traceless tensor, if such a
representation is possible, it must have the form

2Em + S = 2µeEm + . . . (10)

in which µe is the usual effective viscosity normalized by
the viscosity of the suspending fluid, and the dots stand
for additional terms as explained in the Appendix A 2.

number of particles Np number of configurations Nc

10 – 16 2048
17 – 79 1024
80 – 150 512

160 256

TABLE I: Number of configurations in the ensemble used in
the simulations for particle volume fractions between 1% and
40%.

We now apply to the present closure problem the
same techniques developed earlier in Refs. 27,28,30. The
method is described in detail in these references and in
Ref. 30 and a brief summary will be sufficient here. We
construct a homogeneous ensemble of hard-sphere con-
figurations by placing N particles in a cubic box of side
L and subjecting them to random displacements. For
each value of the volume fraction, we construct in this
way several ensembles containing between 10 and 160
spheres, and between 256 and 2048 configurations (see
Table I and Ref. 30 for further details). For the inter-
mediate volume fraction of 35% and particle numbers 62
and 80 we have found that the running average of most
quantities settles within a band of less than 10% percent
after about 700 configurations, and convergence improves
as the number of particles increases. As explained later,
due to the several ways in which the forcings can be cho-
sen for each configuration, all the averages that are used
in this work (except one) correspond as a minimum to
three times the number of configurations shown in Table
I.

While a direct averaging would produce ensemble av-
erages corresponding to a spatially homogeneous system,

by suitably biasing the uniform-system probability, we
produce results which correspond to a non-uniform num-
ber density distribution

n(x) = n0 (1 + ε sin k · x) (11)

in which n0 = N/L3, k is a vector with modulus 2π/L
parallel to one of the sides of the box, and ε a small
parameter. As a result of this procedure, to first order
in ε, all the average quantities will consist of a constant
part and a sinusoidal (or co-sinusoidal) disturbance. The
introduction of the parameter ε enables us to identify
unequivocally the latter part above the statistical noise.
The use of ensembles with a different number of particles
for the same volume fraction enables us to vary the box
side L and, therefore, k.

For each one of the flows considered here (applied force,
index F ; applied torque, index T , applied strain, index
E), the symmetric stress S can be calculated directly
from the results of the numerical simulations using its
expression (A1) in terms of multipole coefficients, and
the results suitably parameterized. For example, for the
shear problem, we write

S(x) = [S]0EE
∞ (12)

+ ε sin (k · x)
(

[S]EEE
∞ + [S]⊥EG

⊥
E + [S]

‖
EG

‖
E

)

,

where [S]0E , [S]EE , [S]⊥E , and [S]
‖
E are coefficients depen-

dent on both the wave vector k and the volume fraction
φ, E∞ is the imposed rate of shear,

G
⊥
E = W

⊥
E k̂ + k̂W

⊥
E , (13)

G
‖
E =

1

2

(

W
‖
Ek̂ + k̂W

‖
E

)

−
1

3

(

k̂ · W
‖
E

)

I, (14)

and

W
‖
E = a

(

k̂k̂

)

·
(

E
∞ · k̂

)

, (15)

W
⊥
E = a

(

I − k̂k̂

)

·
(

E
∞ · k̂

)

. (16)

The numerical results for the mixture velocity are pa-
rameterized as

um(x) = E
∞ · x + ε cos (k · x) [um]

⊥
E W

⊥
E , (17)

where [um]
⊥
E is the numerically computed coefficient.

Since E∞ is symmetric and traceless and the problem
linear, an arbitrary state of uniform shear can be repre-
sented by the linear combination of 5 linearly indepen-
dent tensors. In our simulations, each configuration is
subjected to each one of these base imposed shears, which
has the effect of increasing the number of configurations

by a factor of 2 for [S]
‖
E and by a factor of 3 for the other

parameters.
The parameterization (17) does not contain a term pro-

portional to W
‖
E due to incompressibility, nor an analo-

gous sine term as the corresponding coefficient is found
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numerically to be many orders of magnitude smaller than

[um]
⊥
E and can therefore be assumed to vanish. By sub-

stituting this expression for um into (3), we find

Em = E
∞ − ε sin (k · x)

k

2
[um]

⊥
E G

⊥
E . (18)

Expressions analogous to (12) and (17) are found for
the other average and closure quantities for each one of
the three flows. The expressions for the force problem
contain vectors WF , (defined later in Eq. 33) and those
for the torque problem vectors WT (defined in Eq. 60)
which characterize each problem just as the two vectors

W
‖
E and W

⊥
E are characteristic of the shear problem.

-8
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-4
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FIG. 1: An example of the k-dependence of the average co-
efficients appearing in Eq. (12) for [S]⊥

E
. This is the same

coefficient shown in Fig. 1 of Ref. 28. Other examples can be
found in Ref. 30.

An example of the k-dependence of one of the coeffi-

cients of S, [S]
⊥
E , is shown in Fig. 1. The results corre-

sponding to each volume fraction are generated by car-
rying out simulations with a variable number of parti-
cles N in the fundamental cell according to the relation

ka =
(

6π2φ/N
)1/3

. At the higher volume fractions, this
figure exhibits oscillations the origin of which is unclear.
However, what is used for the present purposes is only
the extrapolated limit to ka = 0, and the amplitude of
the oscillations decreases for small k. In view of this
fact and of the consistency observed in the results (dis-
cussed below), we believe that the truncation of the mul-
tipole expansions used in the simulation is adequate for
the present purposes.

The numerical results are fitted as30

[S]
0
E = D[S]0

E , (19)

[S]
E
E = D[S]E

E + (ka)2A[S]E
E , (20)

[S]
‖
E = 0 + (ka)2A[S]

‖
E , (21)

[S]
⊥
E = D[S]⊥

E + (ka)2A[S]⊥
E . (22)

The results for the other flows are fitted in the same way
as shown in the Appendix A 2. Similar fits are generated

for the k-dependence of the coefficients of um and of the
other average quantities; for example

[um]
⊥
E =

1

k
D[um]⊥

E + kA[um]⊥
E . (23)

Upon substituting the parameterizations (19) to (23)
into the closure relation (10), equating corresponding
terms, and taking the limit k → 0 corresponding to an
infinite system size, we find

µe = 1 +
1

2
D[S]0

E , (24)

µe = 1 −
D[S]⊥

E

D[um]⊥
E

, (25)

dµe

dφ
=

1

2φ
D[S]E

E . (26)

The last relation is found recalling that µe = µe(φ) so
that, if φ′ = φ(1 + ε sin k · x),

µe(φ
′) = µe(φ

′) + (φ′ − φ)
dµe

dφ
. (27)

The relations shown are derived from the leading powers
of k in the parameterizations. In principle, additional
relations could be found from the higher order terms.
However, as we have shown in an earlier paper,30 these
higher-order terms appear to be affected by the finite size
of the system simulated and therefore they would not lead
to relations corresponding to intrinsic properties of the
suspension.

By proceeding in th same fashion for the other prob-
lems – applied force and torque – one finds the analogous
relations

µe = 1 −
D[S]⊥

T

D[um]⊥
T

, (28)

µe = 1 +
D[S]⊥

F

D[um]⊥
F

. (29)

It should be stressed that only the relation (24) for
the effective viscosity can be derived by a consideration
of a spatially homogeneous suspension. For example, in
a uniformly sedimenting suspension, there would be no
shear and, therefore, the terms containing µe would van-
ish identically. By considering the non-uniform case, we
are now in a position to investigate whether the same
µe which accounts for the effective viscosity of a sheared
uniform suspension can account for the stress in a non-
uniform suspension subjected to other forcings. In other
words, consistency among the various expressions shown
above would imply that µe is a robust quantity which has
the same value in (at least) three very different physical
situations. This issue addresses the question of the very

existence of effective properties, in the sense of intrinsic
descriptors of the suspension behavior in different flow
situations.
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FIG. 2: µe from (24), (25), (28) and (29). Dashed and solid
lines show the dilute-limit fit (30) and the whole-range fit
(5/2)φ + Aφ2 + Bφ3.

An excellent consistency can indeed be observed in
Fig. 2, which shows µe calculated from the uniform part
of the shear problem (open squares, Eq. 24), and from
the non-uniform parts of the shear problem (open circles,
Eq. 25), of the torque problem (up-triangles, Eq. 28),
and of the force problem (down-triangles, Eq. 29).

A further consistency test is offered by comparing Eq.
(26) for dµe/dφ with the derivative calculated from the
fitting as dµe/dφ = 2.5 + 2Aφ + 3Bφ2 shown in Fig. 3.
The observed consistency implies that, for weak spatial
non-uniformity (as measured by ε, cf. Eq. 11), the ef-
fective viscosity only depends on the local value of the
volume fraction.

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

dµ
e/

dφ

volume fraction φ

FIG. 3: dµe/dφ from (26). The solid line is the derivative of
the whole-range fit of µe given in the text.

For φ ≤ 0.05, our µe is well fitted by

µe = 1 +
5

2
φ + 5.07φ2. (30)

As mentioned before, the present calculations are done
with the assumption of an isotropic two-body correla-
tion function including multipoles up to the fifth order.

It is well known that the coefficient of the φ2 term de-
pends on the multipole truncation,39 as well as the micro-
structure, such as the anisotropy of the pair distribution
function.40 Our result 5.07 for this coefficient is consis-
tent with earlier studies, such as 5.2 by Batchelor and
Green41 with all moments, and 4.84 by Beenakker39 ob-
tained by means of a concentration expansion. Over the
whole range of φ, our numerical result for µe is well fitted
by

µe = 1 + 2.5φ + Aφ2 + Bφ3 , (31)

with A = 2.84 and B = 18.9 as shown by the solid line
in Fig. 2.

Since in our calculation we only include multipoles up
to the fifth order without lubrication corrections, the ac-
curacy of our results decreases with increasing φ. For
example, for φ = 25% and 40%, we find µe = 2.10 and
3.67, respectively, as shown in Table II, to be compared
with 2.17 and 4.27 as reported by Ladd.42

TABLE II: Effective viscosity µe as computed for the shear
of a uniform (E0) and non-uniform (E⊥) suspension, and for
the flow induced by an applied torque (T⊥) and force (F⊥)
to the particles of a non-uniform suspension.

φ E0 E⊥ T⊥ F⊥

0.01 1.02548 1.025 1.025 1.0257
0.02 1.05196 1.051 1.052 1.0522
0.03 1.07947 1.079 1.080 1.0796
0.04 1.10810 1.108 1.109 1.1078
0.05 1.13788 1.138 1.137 1.1371
0.10 1.3063 1.312 1.305 1.300
0.15 1.5145 1.53 1.505 1.496
0.20 1.773 1.79 1.76 1.742
0.25 2.098 2.12 2.07 2.05
0.30 2.505 2.52 2.47 2.44
0.35 3.021 3.0 3.0 2.94
0.40 3.673 3.7 3.7 3.55

IV. THE POLAR VECTOR OF THE

ANTISYMMETRIC STRESS

We proceed in the same way for the polar vector of the
antisymmetric stress, V . By including all the terms with
the correct parity and vectorial nature which contribute
to leading order in k we write

V = V1u∆

+V2a
2
Em · ∇φ + V3a

2∇2
um

+V4a
2
∇ × Ω∆ + V5a

2 (∇φ) × Ω∆, (32)

where Ω∆ is the angular “slip” velocity defined earlier
after Eq. (9). It will be appreciated that the first term
of V does not contain factors of the particle radius and,
therefore, would not vanish in the limit a/L → 0.
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In this case, we discuss the parameterizations with ref-
erence to the force problem (index F ), characterized by
the vector

WF =
F0

6πµa
(33)

which is the sedimentation velocity of a single isolated

particle subjected to the force F0; the vectors W
‖
F and

W
⊥
F are its projection parallel and orthogonal to the non-

uniformity vector k. By choosing, for each configuration,
the direction of the force parallel to the three sides of the
fundamental cell, we generate three times as many data
as the number of configurations. We write V as

V (x) = [V ]0F WF

+ε sin (k · x)
(

[V ]
‖
F W

‖
F + [V ]⊥F W

⊥
F

)

, (34)

and calculate the numerical coefficients [V ]0F , [V ]
‖
F , and

W
‖
F by taking the ensemble average of the multipole co-

efficients appearing in the general expression (A1). We
also have

u∆(x) = [u∆]
0
F WF

+ ε sin (k · x)
(

[u∆]
‖
F W

‖
F + [u∆]

⊥
F W

⊥
F

)

,(35)

with an expression for um similar to (17). Upon substitu-
tion of these parameterizations into the closure relation
(32) and dropping some higher-order terms in k which
do not contribute to the final result, we have

[V ]
0
F = V1[u∆]0F , (36)

[V ]
‖
F = V1[u∆]

‖
F + φ

dV1

dφ
[u∆]0F , (37)

[V ]
⊥
F = V1[u∆]⊥F + φ

dV1

dφ
[u∆]0F − V3(ka)2[um]⊥F ,(38)

The k-fits are now given by

[V ]
0
F = A[V ]0

F , (39)

[V ]
‖
F = A[V ]

‖
F + kB[V ]

‖
F + k2C [V ]

‖
F , (40)

[V ]
⊥
F = A[V ]⊥

F + kB[V ]⊥
F + k2C [V ]⊥

F , . (41)

[u∆]
0
F = A[u∆]0

F + (ka)B[u∆]0
F , (42)

[u∆]
‖
F = A[u∆]

‖
F + (ka)B[u∆]

‖
F , (43)

[u∆]
⊥
F = A[u∆]⊥

F + (ka)B[u∆]⊥
F . (44)

The coefficient V1 of the uniform part is determined
from (36) as

V1 =
A[V ]0

F

A[u∆]0
F

. (45)

Figure 4 shows this coefficient calculated from (45) di-
vided by φ. It is seen that V1 increases rapidly with con-
centration, which makes the effect of the corresponding

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

V
1 

/ φ

volume fraction φ

FIG. 4: The coefficient V1 introduced in Eq. (32) and calcu-
lated from (45) divided by φ vs. volume fraction φ. The solid
line corresponds to the fitting (46).

term significant for non-dilute suspensions. These results
can be fitted by

V1(φ) =
3

10
φ + A

φ2

(1 − φ)B
, (46)

where the first term reproduces the dilute-limit result (9)
and A = 1.68, B = 2.20.

From Eq. (37) we deduce, in the limit k → 0,

φ
dV1

dφ
=

1

A[u∆]0
F

(

A[V ]
‖
F − V1A

[u∆]
‖
F

)

, (47)

in which the left-hand side arises similarly to (26). This
relation affords an opportunity to check the robustness
of the result for V1. Figure 5 shows dV1/dφ calculated
from (47), as well as the estimation by numerical differ-
entiation of (45) and analytical differentiation of the fit
(46): all three results are consistent.

From Eq. (38), we have V3 as

V3 = −
1

D[um]⊥
F

(

A[V ]⊥
F − V1A

[u∆]⊥
F − φ

dV1

dφ
A[u∆]0

F

)

.

(48)
The possibility of testing the consistency of V3, and

also of V1, is offered by a consideration of the shear prob-
lem: from (A29) of the Appendix, we find

V3 = −
1

D[um]⊥
E

(

A[V ]⊥
E − V1A

[u∆]⊥
E − V2φ

)

, (49)

where the symbols have their usual meaning and V2 is
given by (A28):

V2 =
1

φ

(

A[V ]
‖
E − V1A

[u∆]
‖
E

)

, (50)

Figure 6 shows V3/φ calculated from (48) and (49) with
V1 given by (45). Division by φ is suggested by the dilute-
limit result (9) which predicts a value -11/140 for this
quantity (horizontal line) as φ → 0, in good agreement
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FIG. 5: Derivative dV1/dφ of the coefficient V1 from (47)
(circles) compared with the numerical differentiation of the
results of the previous figure (triangles). The solid line corre-
sponds to the derivative calculated by the fitting (46).

with the numerical results. The slanted line represents
the following fit:

V3 = −
11

140
φ + Aφ2, (51)

where A = −0.313. The consistency between the two de-
terminations of V3 is good in spite of some fluctuations
amplified by the division by φ. This result also implies
that V1 calculated for the force problem gives a consis-
tent result when used in expressions derived for the shear
problem. This is an important conclusion irrespective of
the actual importance of the terms of (32) beyond the
first one.

-0.25

-0.2

-0.15

-0.1

-0.05

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

V
3 

/ φ

volume fraction φ

F

E

FIG. 6: Graph of V3/φ obtained by (48) (circles) and (49) (tri-
angles) compared with the dilute-limit result -11/140 shown
by the horizontal line and the fitting (51).

Figure 7 shows V2 calculated from (50). The horizontal
line is the value 1/7 given by the dilute expression (9),
with which the numerical results are in close agreement.
For volume fractions of 30% and higher, the error is larger
and it is difficult to make definite statements on the φ-
dependence of this quantity in this range.

 0.05

 0.1

 0.15

 0.2

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

V
2

volume fraction φ

FIG. 7: The coefficient V2; the solid line is the dilute-limit
result 1/7.

For the coefficients V4 and V5 we can only generate a
single relation from the torque problem (Eq. A27 in the
Appendix), which is

φ

(

V4
dΩ(φ)

dφ
+ V5Ω(φ)

)

= A[V ]⊥
T −V1A

[u∆]⊥
T +V3D

[um]⊥
T .

(52)
Here we use the results30

A[Ω∆]0
T = Ω(φ), A[Ω∆]⊥

T = φ
dΩ(φ)

dφ
, (53)

in which Ω(φ) is the hindrance function for rotation in a
uniform suspension defined by

Ω(φ)
T0

8πµa3
= Ω∆, (54)

in which T0 is the couple acting on each particle. Our
numerical results for this quantity30 can be fitted by

Ω = 1.0 − 1.5φ + 0.67φ2 (55)

Since we only have one equation for the two coefficients
V4 and V5, we are unable to determine them indepen-
dently. Their linear combination with the known func-
tion Ω(φ) appearing in the left-hand side of Eq. (52) is
proportional to φ2 in the dilute limit, and is well fitted
by

φ

(

V4
dΩ(φ)

dφ
+ V5Ω(φ)

)

= φ2 (A + φB) , (56)

where A = −0.193 and B = −0.707. Figure 8 shows
theright-hand side of Eq. (52) divided by φ2 as a function
of φ, where the two earlier estimates (48) and (49) of V3

are used.
The computed values of the coefficients of the vector

V are shown in Table III.
In closing, it may be noted that the contribution of

V to the momentum equation in the i-direction may be
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TABLE III: Closure coefficients for V .

φ V1 V2 V3 φ(V4Ω
′ + V5Ω)

F E F E
0.01 0.00312 0.143 −0.001 −0.0006 −0.00003 −0.00002
0.02 0.00654 0.14 −0.002 −0.0017 −0.00008 −0.00008
0.03 0.0103 0.15 −0.003 −0.0018 −0.0003 −0.0001
0.04 0.0144 0.15 −0.004 −0.003 −0.0003 −0.0003
0.05 0.0190 0.15 −0.006 −0.004 −0.0007 −0.0005
0.10 0.0489 0.15 −0.012 −0.009 −0.0029 −0.0023
0.15 0.095 0.15 −0.019 −0.016 −0.0070 −0.0058
0.20 0.166 0.16 −0.025 −0.024 −0.012 −0.011
0.25 0.269 0.15 −0.041 −0.033 −0.024 −0.021
0.30 0.41 0.11 −0.06 −0.05 −0.04 −0.04
0.35 0.63 0.10 −0.07 −0.07 −0.05 −0.05
0.40 0.94 0.2 −0.09 −0.08 −0.08 −0.08

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

volume fraction φ

F

E

FIG. 8: (V4Ω
′ + V5Ω)/φ vs. φ obtained by (52) with V3 of

(48) (circles) and (49) (triangles).

written identically as

− (∇ × ∇ × V )i = ∂j

{[

1

2
(∂jVi + ∂iVj) −

1

3
δij∇ · V

]

+
1

2
(∂jVi − ∂iVj) −

2

3
δij∇ · V

}

(57)

in which one recognizes a traceless symmetric term, an
antisymmetric term, and an isotropic term. This was the
decomposition of the stress adopted in Ref. 28, a study
that was carried out before the form (1) of the stress was
developed in Ref. 33.

V. THE AXIAL VECTOR OF THE

ANTISYMMETRIC STRESS

In principle, the closure relation for the axial vector of
the antisymmetric stress R may contain several terms,28

R = R1Ω∆

+R2a
2
∇ × (Em · ∇φ) + R3a

2∇2
∇ × um

+R4a
2
∇ × u∆ + R5 (∇φ) × u∆ + . . . . (58)

In this case, we discuss the parameterizations with ref-
erence to the torque problem (index T ), which is charac-
terized by the axial vector

ωT =
T0

8πµa3
, (59)

which is the rotation velocity of a single isolated particle
subjected to the couple T0; in this case there is only one
polar vector characteristic of the problem, namely

W
⊥
T = ak × ωT . (60)

By choosing, for each configuration, the direction of the
torque parallel to the three sides of the fundamental cell,
we effectively multiply by 3 the number of configurations
used in the averaging as before.

We have

R(x) = [R]0T ωT

+ ε sin (k · x)
(

[R]
‖
T ω

‖
T + [R]⊥T ω

⊥
T

)

, (61)

Ω∆(x) = [Ω]0T ωT + ε sin (k · x)
(

[Ω]
‖
T ω

‖
T + [Ω]⊥T ω

⊥
T

)

,

in which ω
‖
T and ω

⊥
T are the components of ωT parallel

and perpendicular to k.
From the closure relation (58) we deduce

[R]
0
T = R1[Ω∆]0T , (62)

[R]
‖
T = R1[Ω∆]

‖
T + φ

dR1

dφ
[Ω∆]0T , (63)

[R]
⊥
T = R1[Ω∆]⊥T + φ

dR1

dφ
[Ω∆]0T . (64)

The k-dependent fits for the coefficients of R are

[R]
0
T = A[R]0

T , (65)

[R]
‖
T = A[R]

‖
T + k2C [R]

‖
T , (66)

[R]
⊥
T = A[R]⊥

T + k2C [R]⊥
T , (67)
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[Ω∆]
0
T = A[Ω∆]0

T , (68)

[Ω∆]
‖
T = A[Ω∆]

‖
T + (ka)2C [Ω∆]

‖
T , (69)

[Ω∆]
⊥
T = A[Ω∆]⊥

T + (ka)2C [Ω∆]⊥
T . (70)

From (62), which derives from the constant term of the
torque problem, we have

R1(φ) =
A[R]0

T

A[Ω∆]0
T

=
3φ

Ω(φ)
, (71)

where use has been made of the fact that A[R]0
T equals

3φ as shown in Ref. 28 and A[Ω∆]0
T is Ω(φ) as shown

in (53). This result is consistent with the analysis of
Batchelor13 who showed that, for a uniform suspension,
µR = 1

2n0T0. In view of this relation, we give in Table
IV, the numerical values of the hindrance function Ω(φ),
rather than of R1.

When R1 calculated from (71) is substituted into (63)
(T ‖ term), we have

φ
dR1

dφ
=

1

A[Ω∆]0
T

(

A[R]
‖
T − R1A

[Ω∆]
‖
T

)

, (72)

and in a similar way, from (64) (T⊥ term),

φ
dR1

dφ
=

1

A[Ω∆]0
T

(

A[R]⊥
T − R1A

[Ω∆]⊥
T

)

. (73)

Figure 9 shows dR1/dφ calculated from (72) and (73)

 2

 4

 6

 8

 10

 12

 14

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

dR
1 

/ d
φ

volume fraction φ

T||

T⊥

FIG. 9: dR1/dφ from (72) (circles) and (73) (triangles); the
line is the analytical derivative of a fit to the data.

as well as the derivative of R1 calculated with the fit
of Ω in (55). The consistency is very good which, once
again, enables us to conclude that R1 is a robust quan-
tity independent of the specific flow. Furthermore, the
simultaneous validity of (72) and (73) implies that, in
a non-uniform system, R1 and, therefore, Ω(φ) can be
evaluated using the local value of the volume fraction.

The fact that there are fewer axial than polar charac-
teristic vectors reduces the number of relations that can
be generated and therefore prevents us from determining
more of the coefficients appearing in the closure relation
(58).

TABLE IV: Hindrance function for rotation Ω(φ).

φ Ω(φ)
0.01 0.9853
0.02 0.9708
0.03 0.9563
0.04 0.9420
0.05 0.9278
0.10 0.8587
0.15 0.7923
0.20 0.7292
0.25 0.6689
0.30 0.6120
0.35 0.5579
0.40 0.5067

VI. SUMMARY AND CONCLUSIONS

Our study of the stress in a spatially non-uniform sus-
pension of equal spheres in Stokes flow has been based on
the identification of the three components of this quan-
tity shown in Eq. (1): a symmetric traceless term, and
an antisymmetric term consisting of an axial and a po-
lar contribution. This result, derived in Ref. 33 and,
more generally, in Ref. 37, extends the well-known work
of Batchelor13 to the non-homogeneous case. While the
expressions derived in the references cited were general,
the focus of this paper has been on the derivation of spe-
cific closure relations for these quantities.

The principal results of this work are the following:

1. By considering three different physical problems:
particles subjected to a force, a torque, and shear,
we found four independent determinations of the
effective viscosity µe, all of which were shown to be
numerically consistent. In the past, µe had been
calculated only from the numerical simulation of
the shearing of uniform suspensions. Our results
imply that the same parameter can describe the
stress in a suspension in different flow situations
as well and is, therefore, a physically well-defined
quantity having a meaning analogous to that of the
ordinary viscosity in a Newtonian fluid.

2. The polar component of the antisymmetric stress,
V , is a new effect which had been identified be-
fore but for which no expression had been estab-
lished. We have found a closure relation for this
quantity, the coefficients of which also exhibit con-
sistency among the different problems. Thus, the
existence of this quantity appears to be well defined
beyond any uncertainty deriving from statistical er-
ror. Furthermore, while some terms in the closure
relation for V vanish as the particle radius is made
smaller and smaller for a fixed volume fraction, the
leading term does not. In principle, this contribu-
tion to the antisymmetric stress is therefore on the
same footing as that of the effective viscosity.
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3. We have also found consistency for the leading clo-
sure coefficient for the axial component R of the
antisymmetric stress, which is related to the hin-
drance function for particle rotation.

4. We have determined that, to leading order in the
spatial inhomogeneity, it is consistent to evaluate
the closure coefficients of the leading terms in cor-
respondence of the local volume fraction.

5. The fact that we have found an excellent consis-
tency among the various determinations of the clo-
sure parameters suggests – although, of course, it
does not prove – that the closures that we propose
may be applicable to general flows beyond those
that we have studied.

Due to the imperfectly understood consequences of the
artificial periodicity arising from the use of a repeated
fundamental cell, we have only been able to focus on
the leading-order behavior in the wave number k of the
spatial non-uniformity. To this order, we have found that
the dominant term of the symmetric stress is the product
of the effective viscosity and Em, the rate of strain of
the volumetric flux of the mixture um. In comparison
with this term, the other terms that could possibly be
present give contributions lower by an order k2, which
our methods prevent us from determining.

Our results have been obtained by carrying out ensem-
ble averages using biased probability distributions corre-

sponding to a prescribed form of the particle number den-
sity. We have not attempted to incorporate any special
structure for the two-particle and higher-order particle
distribution functions which, as is well known, in general
depend on the particular flow considered. In a recent
paper,30 we have shown how to bias the probability dis-
tribution so as to reproduce an arbitrary functional form
for the particle number density. We believe that a sim-
ilar approach may enable us to control the second- and
higher-order distribution functions.

Acknowledgments

The numerical simulations were carried out with a code
based on one kindly given to us by Prof. Sangani.

Support under DOE grant DE-FG02-99ER14966 is
gratefully acknowledged.

APPENDIX A: DETAILS OF THE CLOSURES

1. Expression for the stress

Equation (1) was given as Eq. (10.19) in Ref. 33.
General expressions for the various contributions were
derived in terms of the coefficients appearing in Lamb’s
general solution of the Stokes equations34–36 in the form

S =
4

3
πµ

∞
∑

l=2

(−1)l+1

l!
(2l + 1)Sl(a

2∇2) ∇
l−2 ·

(

n[∇l (r2l+1q−l−1)]r=a

)

, (A1)

R =
4

3
πµ

∞
∑

l=2

(−1)l+1

(l − 1)!

{

(2l + 1)Sl(a
2∇2) ∇

l−1 ·
(

n[∇l (r2l+1χ−l−1)]r=a

)}

, (A2)

V =
4

3
πµ

∞
∑

l=2

(−1)l+1

l!

{

(2l + 1)(2l + 3)Sl+1(a
2∇2) ∇

l−1 ·
(

n
[

∇l
(

r2l+1φ∗
−l−1

)]

r=a

)

+a2Sl+1(a
2∇2) ∇

l−1 ·
(

n[∇l (r2l+1q−l−1)]r=a

)}

. (A3)

Here the operators Sl are defined by

Sl =
3

(2l + 1)!!

[

1 +
a2∇2

1!21(2l + 3)

+
(a2∇2)2

2!22(2l + 3)(2l + 5)
+ . . .

]

. (A4)

The term
[

∇
l
(

r2l+1q−l−1

)]

r=a
and similar ones are con-

stants, and the overline denotes the ensemble average.

2. The symmetric part of the stress S

An expanded form of the closure relation (10) for the
symmetric part of the stress S by um, u∆, Ω∆, and φ is

2Em + S = 2µeEm + 2µ∆E∆ + 2µ∇E∇ + 2µΩEΩ

+2µ0a
2∇2

Em + 2µ1a
2
Em∇2φ + . . . ,(A5)
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where E∆, E∇, and EΩ, are defined by

E∆ =
1

2

[

∇u∆ + (∇u∆)
†
]

−
1

3
(∇ · u∆) I, (A6)

E∇ =
1

2

[

u∆∇φ + (u∆∇φ)
†
]

−
1

3
(u∆ · ∇φ) I,(A7)

EΩ =
1

2

[

{∇ (∇ × Ω∆)} + {∇ (∇ × Ω∆)}
†
]

. (A8)

In Sec. III, the shear problem is discussed in detail. Here
we summarize the parameterizations and k-dependencies
for the force and torque problems. For the former:

S(x) = ε cos (k · x)
(

[S]⊥F G
⊥
F + [S]

‖
F G

‖
F

)

, (A9)

and for the latter:

S(x) = ε sin (k · x) [S]⊥T G
⊥
T . (A10)

The coefficients are fitted as

[S]
‖
F =

1

k

(

0 + k2A[S]
‖
F + k3B[S]

‖
F

)

, (A11)

[S]
⊥
F =

1

k

(

D[S]⊥
F + k2A[S]⊥

F + k3B[S]⊥
F

)

, (A12)

[S]
⊥
T = D[S]⊥

T + k2A[S]⊥
T . (A13)

Upon substituting the parameterizations into the clo-
sure relation (A5), we find the seven relations

[S]
0
E = 2µe (A14)

[S]
E
E = 2φ

(

1 −
k2

10

)(

dµe

dφ
− k2µ1

)

, (A15)

[S]
‖
E

2
= −µ∆k[u∆]

‖
E , (A16)

[S]
⊥
E = −

(

µe − k2µ0

)

k[um]⊥E − µ∆k[u∆]⊥E

+µΩk2[Ω∆]⊥E (A17)

[S]
⊥
T = −

(

µe − k2µ0

)

k[um]⊥T − µ∆k[u∆]⊥T

−µΩk2[Ω∆]⊥T , (A18)

[S]
‖
F

2
= µ∆k[u∆]

‖
F + µ∇φ

(

1 −
k2

10

)

k[u∆]0F ,(A19)

[S]
⊥
F =

(

µe − k2µ0

)

k[um]⊥F + µ∆k[u∆]⊥F

+µ∇φ

(

1 −
k2

10

)

k[u∆]0F

+µΩk2[Ω∆]⊥F . (A20)

By considering the k-dependencies of the averages of [S],
[um], [u∆], and [Ω∆], up to O(k0), we have only the terms
with µe exhibited in the text.**?

3. The polar vector of the antisymmetric stress V

In Sec. IV, the parameterization of the polar vector of
the antisymmetric stress V for the force problem is given

by (34). The parameterizations for the torque and shear
problems are

V (x) = ε cos (k · x) [V ]⊥T W
⊥
T , (A21)

and

V (x) = ε cos (k · x)
(

[V ]
‖
EW

‖
E + [V ]⊥EW

⊥
E

)

, (A22)

respectively.
The k-fits of the [V ]’s for the torque and shear prob-

lems are

[V ]
⊥
T = k

(

A[V ]⊥
T + kB[V ]⊥

T

)

, (A23)

[V ]
‖
E = k

(

A[V ]
‖
E + kB[V ]

‖
E

)

, (A24)

[V ]
⊥
E = k

(

A[V ]⊥
E + kB[V ]⊥

E

)

. (A25)

Upon substituting these parameterizations and the
corresponding ones for the velocities into the closure rela-
tion (32) and equating the corresponding terms, we find
Eqs. (36) and (37) in the text and

[V ]
⊥
F = V1[u∆]⊥F + φ

dV1

dφ
[u∆]0F − V3k

2[um]⊥F ,

+V4k[Ω∆]⊥F , (A26)

[V ]
⊥
T = V1[u∆]⊥T − V3(ka)2[um]⊥T

+V4k[Ω∆]⊥T + V5kφ[Ω∆]0T , (A27)

[V ]
‖
E = V1[u∆]

‖
E + V2kaφ, (A28)

[V ]
⊥
E = V1[u∆]⊥E − V3k

2[um]⊥E + V2kφ

−V4k[Ω∆]⊥E . (A29)

Dropping the terms with O(k2) in (A26), we only show
the leading terms in (38) in the text.

4. The axial vector of the antisymmetric stress R

For the force problem, the axial vector of the antisym-
metric stress R is parameterized as

R(x) = ε cos (k · x) [R]⊥F ω
⊥
F , (A30)

and for the shear problems as

R(x) = ε sin (k · x) [R]⊥Eω
⊥
E , (A31)

in which ω
⊥ is the component of the characteristic axial

vector ωT ** perpendicular to k.
The k-dependent fits for the coefficients of R for the

force and shear problems are

[R]
⊥
F = k

(

A[R]⊥
F + kB[R]⊥

F

)

, (A32)

[R]
⊥
E = k2

(

A[R]⊥
E + kB[R]⊥

E

)

. (A33)
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As before, substituting these parameterizations and k-
fittings into the closure relation (58), we find Eqs. (62)
and (63), and

[R]
⊥
T = R1[Ω∆]⊥T + φ

dR1

dφ
[Ω∆]0T

+R3k
3[um]⊥T − R4k[u∆]⊥T , (A34)

[R]
⊥
F = R1[Ω∆]⊥F

−R3k
3[um]⊥F + R4k[u∆]⊥F

+R5φk[u∆]0F , (A35)

[R]
⊥
E = −

R3

2
k[um]⊥E + R1[Ω∆]⊥E

+R3k
3[um]⊥E − R4k[u∆]⊥E

−R2k
2φ. (A36)

Note that (A34) includes higher order terms in k which
are neglected in (64) in the text. Even though we have
five equations for the closure of R, we cannot determine
all the five coefficients appearing in the closure relation
as the three equations for the torque problem essentially
contain only R1. Thus, we are left with only two equa-
tions to determine the four remaining coefficients.
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