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Hydrodynamic interaction among rigid nanoparticles in laminar flow with Navier’s slip boundary condition
on the nanoparticles’ surfaces is formulated. The single-particle problem under the general linear flow is solved
in terms of the Lamb general solution, and the velocity field exerted by the slipparticle is expressed in terms
of the multipole expansion in the force moments. Thereby, the mobility matrix for a many-body system is
constructed with Fax́en’s laws for the force, torque and the stresslet, and is extended to periodic systems by
the Ewald summation technique. Using this formulation, the Stokesian dynamics method is generalized to slip
particles with arbitrary slip length. The method is applied to a system in an unbounded fluid and to a system
with periodic boundary conditions. The mobility problem with constant forcefor the former and sedimentation
velocity (drag coefficient) and spin and shear viscosities for the latter are solved. A comparison is made with
the existing results for no-slip particles. According to the surface slip, the reductions of friction (drag force),
spin and shear viscosities are observed for the problems with the applied force, torque, and shear, respectively.
In particular, we show that just changing the slip properties of the nanoparticle surface, one can control
the drag force within an order of magnitude. The slip-length dependences of the drag coefficient and other
rheological properties are useful for rational design of nanofluidic devices, including controllable manipulation
and separation of large biomolecules in nanofluidic channels.

Keywords: Nanofluidics, Slip Boundary Condition, Hydrodynamic Interaction, Stokes Flow.

I. INTRODUCTION

Microfluidics and nanofluidics enable analytical methods
and devices for controlling and manipulating fluid flows at
small length scales.1–4 For nanoparticles, it is typically less
than a micrometer. This subject has recently received an
enormously large attention by growing interests to the nan-
otechnology and its application in biophysics, biochemistry
and medicine. In nanofluidic devices, the hydrodynamic in-
teraction of the target object to the system boundary through
the fluid dominates the intermolecular interactions. Because
changing the shape and/or the material of the instrumentality
is feasible and that changing intrinsic intermolecular forces
is not, nanofluidic devices turned to be much more flexible
to control the system function than conventional experimental
setups where the bulk character of the fluid dominates. Il-
lustrative examples where it can be used are given by exper-
iments on separation5–7 and single molecule detection8–10 of
biomolecules. One of the important mechanisms in these pro-
cesses is the hydrodynamic interaction.

At present, study in the field is driven largely by experimen-
tal works, and there is a general lack of theoretical research.
For further progress and breakthrough, it is inevitable to un-
derstand physics of processes in fluids in nanometer scale by
theoretical framework based on solid foundation capable of
explaining the existing results and of predicting new phenom-
ena that might happen in such devices. A possible theoreti-
cal account combines hydrodynamic and statistical mechani-

∗Electronic address:andriy.kovalenko@nrc-cnrc.gc.ca

cal theories. The focus of this article is the former, which de-
scribes the fluid flows by the Stokes equation and uses a single
parameter called the “slip length” characterizing the boundary
condition in the nano scale. At this point, it is worth to note
that, at least for straight channel flows, molecular dynamics
simulations confirmed that the hydrodynamic theory works at
the scale larger than 10 molecular diameters.11

Hydrodynamic interaction in Stokes flow has been ac-
tively studied in fluid mechanics12,13 and successfully applied
for colloidal suspensions and polymer solutions.14 A typical
length scale there is down to only micrometers. The inter-
action is obtained by solving the boundary value problem on
the surface of the objects on which the conventional no-slip
boundary condition is applied. Because of the long-range and
many-body nature of the interaction, computational methods
are not just a numerical tool but an important theoretical com-
ponent for understanding the physics. There exist a variety
of numerical formulations: Among them, boundary element
method is widely used for deformable objects,15 and Stoke-
sian dynamics method is for solid particles.16–19 Usually, cal-
culations of full hydrodynamic interaction is computationally
heavy, although several improvements have been proposed to
ease the heavy load.20–22Because of the computational cost, in
several practical occasions, hydrodynamic interaction isoften
ignored or replaced by a simpler form (like the point force ap-
proximation) or empirical mesoscopic models such as dissipa-
tive particle dynamics.23 However, for the present purpose of
establishing the theoretical framework for nanofluidics, where
the hydrodynamics has an important role, we should not com-
promise on it.

One of the problems of the application of the hydrody-
namic theory in Stokes flows for nanofluidics is on the no-
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slip boundary condition. Recently, by the ability to probe
small length scales and to fabricate surfaces with various
properties, apparent violations of the no-slip boundary con-
dition at the liquid-solid interface in nano scale have beenre-
ported even for simple liquids.24–27 The slip boundary condi-
tion was first proposed by Navier28 in 19th century, the early
age of fluid mechanics, when the proper boundary conditions
(mainly between no-slip and partial-slip) were discussed in
the first place.25 For gas flows, Maxwell had shown that the
surface slip is related to the non-continuous nature of gas and
the slip length is proportional to the mean-free path.29 For liq-
uids, on the other hand, from experiments at that age the no-
slip boundary condition was accepted by the 1900s, and since
then had been treated as a fundamental law. By recent ex-
tensive studies on the surface slip in micro and nano scales,
the physics of the liquid-solid slip is realized to be much more
complicated than that for gases. There are many factors which
would affect the surface slip including individual molecular
interaction, surface roughness, surface charge, and wetting
condition, and at this stage it is too early to make any conclu-
sive consensus about the physics of the liquid-solid slip.24,30

In this article, we focus on the formulation of the hydro-
dynamic interaction among rigid spherical particles with arbi-
trary slip length, and therefore, this formulation is applicable
to nanofluidic situations. We also extend the Stokesian dy-
namics method for slip particles in terms of the theory. The
formulation in this article is limited to spherical objects. How-
ever, using spheres as building blocks to form a desired object,
we are able to simulate motions of polymer chains (as well as
more complex structures) in fluid flow. Moreover, systems
with confined geometries such as a porous medium can be
simulated by mimicking them with particles fixed in space.31

The point of these applications is that the hydrodynamic in-
teraction among those objects is fully taken into account, al-
though the modeling of objects by spheres has its own limita-
tion.

The paper is organized as follows: In Sec. II, we describe
hydrodynamic interaction among spherical particles with arbi-
trary slip length. The results are implemented in the Stokesian
dynamics method. In Sec. III, we present the numerical solu-
tions for particles in unbounded fluid as well as particles in
the cubic array configuration with the periodic boundary con-
dition, and discuss the results. The conclusions of this article
are presented in Sec. IV.

II. HYDRODYNAMICS FOR SLIP PARTICLES

In low-Reynolds number flows such as liquid flows in
nanofluidic devices, the fluid motion is governed by the Stokes
equation

−∇P+ µ∇2u = 0, (1)

with the incompressibility condition∇ · u = 0, whereP is
the pressure,µ is the viscosity, andu is the velocity of the
fluid. The problem of fluid mechanics is given by the bound-
ary value problem at the boundary of the fluid. On the liquid-
solid interface, there are two types of the boundary conditions,

no-slip and (partial) slip. In most cases in fluid mechanics,the
former is widely used, while the latter is recently getting at-
tention especially at small scale fluid flows.24–27

The slip boundary condition had been proposed in such
long time ago, however, the solutions are very limited, com-
pared with those for the no-slip boundary conditions: Basset
solved the flow of single particle with slip surface,32 Felderhof
solved the problems for single particle33 and two particles,34

Bławzdziewiczet al. showed the interaction between the slip
particles and lubrication functions for the axisymmetric mo-
tion for the study of surfactant-covered drops,35 and Luo and
Pozrikidis studied two slip spheres under the shear flow.36 The
point force solution in semi-infinite space with a flat plane ob-
tained by Blake41 for no-slip condition was recently extended
to the slip condition by Lauga and Squires.30 The extension of
the exact two-body solution for no-slip particles37 to the slip
particles was done by Ying and Peters38 for the gas-solid sys-
tem and by Keh and Chen39 and one of the present author40

for the liquid-solid system.
In this section, we briefly review the boundary conditions,

and give the single-body solution of the Stokes equation un-
der the general linear flows. For many-body problem, we con-
struct the mobility matrix obtained by the multipole expansion
of the velocity field and Fax́en’s laws for the force, torque, and
stresslet. Finally, the formulation is extended to the periodic
systems in terms of Ewald summation technique.

A. Navier’s Boundary Condition

The conventional no-slip boundary condition for the veloc-
ity field u on a surfaceS is given by

[
u − uS

]
(y) = 0 for y ∈ S, (2)

whereuS is the velocity of the surface. For a rigid spherical
particle with the translational velocityU and angular velocity
Ω, it is given by

uS(y) = U +Ω × (y − x0) , (3)

wherex0 is the center of the particle.
Instead of the no-slip boundary condition (2), Navier’s slip

boundary condition28 is given by

[
u − uS

]
(y) =

γ

µ
(I − nn) · (σ · n) , (4)

whereγ is the slip length,I is the unit tensor,n is the unit
normal vector of the surface, andσ is the stress tensor of the
fluid defined by

σ = −PI + µ
[
(∇u) + (∇u)†

]
. (5)

The symbol† denotes the transposition of the tensor. Note
that (I − nn) is the projection to the tangential component.
This slip boundary condition (4) exhibits kinematic boundary
condition for the normal component

n ·
(
u − uS

)
= 0, (6)
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and the slip velocity for the tangential component which is
proportional to the velocity gradient as

(I − nn) ·
(
u − uS

)

= γ (I − nn) ·
{
n ·

[
(∇u) + (∇u)†

]}
. (7)

The proportionality factorγ has the dimension of length.

B. Single Body Problem

The fluid flow around a single spherical particle with the
slip surface was first described by Basset.32,42 Here we con-
sider a more general case and derive the solution for a sphere
moving with the translational velocityU and rotational veloc-
ity Ω in an arbitrary linear flow

u∞ = U∞ +Ω
∞

× r +E∞ · r, (8)

wherer is the relative vector from the particle center tox.
The disturbance field (velocity relative to the imposed flow)
at a positionx is expressed by Lamb’s general solution12,42as

u(x)−u∞(x) =
∑

n

[
∇ × rχn +∇Φn +Cnr2

∇
pn

µ
+ Dnr

pn

µ

]
,

(9)
whereχn,Φn, andpn are harmonic functions inn-th order, and
the coefficientsCn andDn are given by

Cn =
n+ 3

2(2n+ 3)(n+ 1)
, (10)

Dn = −
n

(2n+ 3)(n+ 1)
. (11)

The integern runs from−∞ to∞ in general, but for the outer
problem where the solution goes to zero at infinity, it is lim-
ited to the negative integers. The stress tensor is given by the
velocity field (9) through Eq. (5). Let us expand harmonic
functions by the spherical harmonicsYmn = Pm

n (cosθ)eimφ as

p−n−1

µ
=

n∑

m=0

pmn
1
a

(a
r

)n+1
Ymn(θ, φ), (12)

χ−n−1 =

n∑

m=0

qmn

(a
r

)n+1
Ymn(θ, φ), (13)

Φ−n−1 =

n∑

m=0

vmna
(a
r

)n+1
Ymn(θ, φ), (14)

wherea is the radius of particle. The polar axis of the spher-
ical coordinate system (r, θ, φ) is taken inz direction. The
coefficients pmn, qmn, andvmn are obtained by the boundary
condition (4) on the particle surface. (See Appendix A for
details.)

For the translating sphere with the velocityU = (0,0,U),
we have

pmn =
3
2

UΓ2,3δm0δn1, (15)

vmn =
1
4

UΓ0,3δm0δn1, (16)

qmn = 0, (17)

where factorsΓm,n represent the correction due to the surface
slip and are defined as

Γm,n =
1+ m̂γ
1+ n̂γ

. (18)

In definition (18),̂γ is the scaled slip length introduced as the
ratio of the slip lengthγ and the particle radiusa:

γ̂ =
γ

a
. (19)

The force acting on the particle is given by the coefficientspmn

of Lamb’s general solution as12,37

F = 4πµa
[
p01ẑ − p11 (x̂ + iŷ)

]
, (20)

wherex̂, ŷ, and ẑ are the unit vectors inx, y, andz direc-
tions, respectively. Note that the appearance of the imaginary
unit in the expression of force is due to the complex form of
the spherical harmonics in Eq. (12) and, as a result, the coef-
ficients pmn are also complex numbers. However, the physi-
cal quantities like forceF in Eq. (20) as well as torque and
stresslet in the following remain real. From Eq. (12), the force
on the sphere translating with the velocityU in z direction is

F = 6πµaΓ2,3Uẑ. (21)

Substituting the solutions in Eqs. (15), (16), and (17) into
(9), the velocity field generated by the translating sphere is
obtained as

u − u∞ =
1

8πµ

(
1+ Γ0,2

a2

6
∇2

)
J · F , (22)

whereJ is the Oseen-Burgers tensor:

Ji j (r) =
1
r

(
δi j +

r ir j

r2

)
. (23)

This solution is identical to that in literature.32,33

For rotating sphere with the angular velocityΩ = (0,0,Ω)
we have

pmn = vmn = 0, (24)

qmn = aΩΓ0,3δm0δn1. (25)

The torque acting on the particle is given by the coefficients
qmn as12,37

T = 8πµa2 [
q01ẑ − q11 (x̂ + iŷ)

]
. (26)

Therefore, the torque on the sphere rotating with the angular
velocityΩ in zdirection is

T = 8πµa3Γ0,3Ωẑ. (27)

This agrees with the results by Felderhof33 and Padmavathiet
al.43 Note that the torqueT would vanish for the sphere with
the perfect-slip surface (for̂γ = ∞). The velocity field is then
given by

u − u∞ =
1

8πµ
R · T , (28)
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where

Ri j (r) = ǫi jk
rk

r3
=

1
4
ǫlk j (∇kJil − ∇l Jik) , (29)

andǫi jk is the Levi-Civita alternating tensor, that is,ǫi jk = 1
for (i, j, k) = (x, y, z) and its even permutations,−1 for the odd
permutations, and 0 otherwise.

For a sphere in a linear flow with the rate-of-strain tensor
given by

−E∞i j = E

(
ẑi ẑj −

1
3
δi j

)
, (30)

we have

pmn =
10
3

aEΓ2,5δm0δn2, (31)

vmn =
1
3

aEΓ0,5δm0δn2, (32)

qmn = 0. (33)

The stresslet on the particle is given by the coefficients pmn

as12,44

S = 2πµa2

{
p02

(
ẑẑ − 1

3
I

)

−p12 [x̂ẑ + ẑx̂ + i (ŷẑ + ẑŷ)]

+2p22 [x̂x̂ − ŷŷ + i (x̂ŷ + ŷx̂)]

}
. (34)

Therefore, the stresslet on the sphere in the shear flow with
the parameterE is

S =
20
3
πµa3Γ2,5E

(
ẑẑ − 1

3
I

)
. (35)

The velocity field generated by a sphere in a shear flow is
given by

u − u∞ = − 1
8πµ

(
1+ Γ0,2

a2∇2

10

)
K : S, (36)

where

Ki jk (r) = −3
r ir jrk

r5
. (37)

Note thatK is always multiplied with the second-rank ten-
sor of symmetric and traceless, and it can be written by the
derivative ofJ as

Ki jk =
1
2

(
∇kJi j + ∇ j Jik

)
. (38)

C. Far-Field Effect

From the solution for a single sphere with slip surface ex-
pressed by Lamb’s general solution, we have the velocity field

exerted by a particle atx0 with the forceF , torqueT , and
stressletS as

u(x) − u∞(x) =
1

8πµ

[(
1+ Γ0,2

a2

6
∇2

)
J (x − x0) · F

+R(x − x0) · T −
(
1+ Γ0,2

a2∇2

10

)
K(x − x0) : S

]
,

(39)

whereJ , R, andK are given by Eqs. (23), (29), and (37),
respectively. Similar to the no-slip case,17 this is in the form
of multipole expansion by the force moments. Note that this
is exact only for the single body problem, but for general sit-
uations like many-body problems, it is valid only for the far
field where the contribution of the higher force moments (than
F , T , andS) are negligible. Here, we define the levels of the
truncation, F, FT, and FTS versions: In F version, we only
takeF , in FT version, we take up toT , and in FTS version,
we take up toS.

From the expression, we also obtain Faxén’s laws for the
slip particle as

F = 6πµaΓ2,3

[
U − u∞ −

(
1+ Γ0,2

a2

6
∇2

)
u′(x0)

]
, (40)

T = 8πµa3Γ0,3

[
Ω −Ω

∞ − 1
2
∇ × u′(x0)

]
, (41)

S =
20
3
πµa3Γ2,5

{
0 −E∞

−
(
1+ Γ0,2

a2∇2

10

)
1
2

[
∇u′ +

(
∇u′

)†] (x0)

}
, (42)

whereu′ is the undisturbed velocity field. From these expres-
sions, we can construct the mobility equation


U − u∞

Ω −Ω
∞

0 −E∞

 =


a b̃ g̃

b c h̃

g h m

 ·


F

T

S

 , (43)

where each element in the vectors (U −u∞,Ω−Ω
∞,0−E∞)

and (F ,T ,S) contains the quantities for all particles in the
system. That is, forN-particle system,F and T have 3N
elements andS has 5N (in reduced form, becauseSi j is sym-
metric and traceless). When we write the element explicitly,
Greek lettersα andβ are used for the particle and Roman let-
ters i, j, andk are for the spacial indicesx, y, andz. Note
that each submatrix in Eq. (43) has different dimension. In
the following, we scale the submatrices for (α, β) interaction
by 6πµ(aα)n with n = 1 for a, n = 2 for b, b̃, g, and g̃,
andn = 3 for the others, and therefore, all matrices are di-
mensionless. This nondimensionalization reduces to that in
conventional Stokesian dynamics17,18 for monodisperse case.
As shown later,̃b, g̃, andh̃ are related to the counterpartsb,
g, andh, respectively.

From the symmetry of the problem, the submatrices in Eq.
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(43) can be written by scalar functions as17

aαβi j = xa
αβeiej + ya

αβ

(
δi j − eiej

)
, (44)

bαβi j = yb
αβǫi jkek, (45)

cαβi j = xc
αβeiej + yc

αβ

(
δi j − eiej

)
, (46)

gαβi jk = xg
αβ

(
eiej −

1
3
δi j

)
ek

+yg
αβ

(
eiδ jk + ejδik − 2eiejek

)
, (47)

hαβi jk = yh
αβ

(
eiǫ jklel + ejǫiklel

)
, (48)

mαβ

i jkl =
3
2

xm
αβ

(
eiej −

δi j

3

) (
ekel −

δkl

3

)

+
ym
αβ

2

(
eiδ jl ek + ejδil ek + eiδ jkel + ejδikel

−4eiejekel

)

+
zm
αβ

2

(
δikδ jl + δ jkδil − δi jδkl

+eiejδkl + δi j ekel + eiejekel

−eiδ jl ek − ejδil ek − eiδ jkel − ejδikel

)
, (49)

wheree = r/|r| is the unit vector of the center-to-center vec-
tor r = x(β) − x(α). For the self part (α = β),

xa
11 = ya

11 = Γ
(1)
3,2, (50)

xc
11 = yc

11 =
3
4
Γ

(1)
3,0, (51)

xm
11 = ym

11 = zm
11 =

9
10
Γ

(1)
5,2, (52)

and the others are zero, where the slip factorΓ(α)
m,n for particle

α is defined by

Γ(α)
m,n =

aα +mγα
aα + nγα

. (53)

Note that the above expressions as well as those in the follow-
ing are applicable for the case where the slip lengths (as well
as the radii) of particles are different (independently).

For the interaction part (α , β), the submatrices can be

written by the derivatives ofJ , R, andK as

a12
i j =

3a1

4

(
1+

a1
2
+ a2

2

6
∇2

)
Ji j (r), (54)

b12
i j = −

3a2
1

8
ǫikl∇kJl j (r), (55)

c12
i j =

3a3
1

8
ǫikl∇kRl j (r), (56)

g12
i jk = −

3a2
1

8

[
1+

(
a1

2

10
+

a2
2

6

)
∇2

]

×
{
∇ j Jik(r) + ∇i J jk(r)

}
, (57)

h12
i jk =

3a3
1

8

{
∇ jRik(r) + ∇iRjk(r)

}
, (58)

m12
i jkl = −

3a3
1

8

(
1+

a1 + a2
2

10
∇2

)

×
{
∇ jKikl(r) + ∇iK jkl(r)

}
, (59)

whereaα is defined by

aα = aα
√
Γ

(α)
0,2, (60)

andr = x(2) − x(1). Here, to simplify the expressions, we use
some properties such as∇2∇2J = 0 and∇2R = 0. Note that
the minus signs inb andg are due to the oddness property
about the vectorr for R, K, and∇J . The submatrices̃b, g̃,
andh̃ are related to the counterparts as

b12
i j =

(
a1

a2

)2

b̃21
i j , (61)

g12
i jk = −

(
a1

a2

)2

g̃21
ki j , (62)

h12
i jk =

(
a1

a2

)3

h̃21
ki j . (63)
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After some calculations, we obtain the scalar functions as

xa
12 =

3a1

2r
−

(
a1

2
+ a2

2
) a1

2r3
, (64)

ya
12 =

3a1

4r
+

(
a1

2
+ a2

2
) a1

4r3
, (65)

yb
12 = −

3a2
1

4r2
, (66)

xc
12 =

3a3
1

4r3
, (67)

yc
12 = −

3a3
1

8r3
, (68)

xg
12 =

9a2
1

4r2
−

(
a1

2

10
+

a2
2

6

)
27a2

1

2r4
, (69)

yg
12 =

(
a1

2

10
+

a2
2

6

)
9a2

1

2r4
, (70)

yh
12 = −

9a3
1

8r3
, (71)

xm
12 = −

9a3
1

2r3
+

(
a1

2
+ a2

2
) 27a3

1

5r5
, (72)

ym
12 =

9a3
1

4r3
−

(
a1

2
+ a2

2
) 18a3

1

5r5
, (73)

zm
12 =

(
a1

2
+ a2

2
) 9a3

1

10r5
. (74)

For no-slip equal spheres (a1 = a2 = a), these reduce to the
results by Durlofskyet al.17

D. Ewald Summation

In the theory above, we can handle many particles in un-
bounded fluid. However, we may want to introduce periodic
boundary conditions, so as to model some sort of systems like
dispersions and porous media.

Under the periodic boundary condition, in the FTS version,
we have to take into account the periodic images as


U (α) − u∞

Ω
(α) −Ω

∞

0 −E∞

 =


a(αα) · F (α)

c(αα) · T (α)

m(αα) · S(α)



+
∑

γ

∑

β

′


a(αβ) b̃(αβ) g̃(αβ)

b(αβ) c(αβ) h̃(αβ)

g(αβ) h(αβ) m(αβ)

 (x(α) − x(β) + r(γ)) ·


F (β)

T (β)

S(β)

 ,

(75)

whereγ is an index (nx,ny,nz) for the lattice vectorr(γ) de-
fined by

r(γ) =
(
nxLx, nyLy, nzLz

)
, (76)

Lx, Ly, andLz are the linear dimensions of the cell, and the
prime on the summation for the particleβ denotes that the self
term (β = α) for the primary cellr(γ) = 0 is excluded. The

submatricesa, etc. are defined byJ as same as before. Be-
cause of the long range nature of the interaction, Eq. (75)
with the infinite summation is difficult to evaluate. By Ewald
summation technique,18,45,46we can rewrite the infinite sum-
mation for the periodic images by two finite summations in
real and reciprocal spaces.

First, we split the Oseen-Burgers tensorJi j (r) into two parts
as

Ji j (r) = J(1)
i j (r, ξ) + J(2)

i j (r, ξ), (77)

where

J(1)
i j (r, ξ) =

(
∇2δi j − ∇i∇ j

)
r erfc(ξr), (78)

J(2)
i j (r, ξ) =

(
∇2δi j − ∇i∇ j

)
r erf(ξr), (79)

with the error function erf(x) and its complementary erfc(x).
Because all submatrices in the mobility matrix in Eq. (43) are
given by the derivatives ofJ through Eqs. (54) to (59) with
(29) and (38), the splitting is simply applicable to them. Here
ξ is an arbitrary parameter characterizing the division into
the real and reciprocal parts. Usually we take the value with
which the division is equal where the computational load is
minimized. Because of the factor erfc(ξr), J (1) and its deriva-
tives decay rapidly forr. Therefore, we can truncate the lattice
summation forγ at some point.

The other contributions coming fromJ (2) are handled in the
reciprocal space ink (the Fourier transformed space). First,
we rewrite the summation as

∑

γ

∑

β

′
M (2)(x(α) − x(β) + r(γ)) ·


F (β)

T (β)

S(β)



=
∑

γ

∑

β

M (2)(x(α) − x(β) + r(γ)) ·


F (β)

T (β)

S(β)



−M (2)(r = 0) ·


F (α)

T (α)

S(α)

 , (80)

whereM (2)(r) just denotes the whole matrix for (α, β) inter-
action coming fromJ (2). The point is that the summation for
the particleβ in the second line is running for all particles
including α, the self contribution. Applying Poisson’s sum
formula

∞∑

n=−∞
F(nL) =

1
L

∞∑

m=−∞

∫ ∞

−∞
dy F(y)ei2πmy/L, (81)

for the three-dimensional lattice summation, we have

∑

γ

M (2)(r + r(γ)) =
1
V

∑

λ

e−ik(λ)·rM̃ (2)(k(λ))

=
1
V

∑

λ

[
M̃

(2)
even(k

(λ)) cos(k(λ) · r)

−M̃ (2)
odd(k

(λ)) sin(k(λ) · r)
]
, (82)
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whereV = LxLyLz is the volume of the periodic cell,λ denotes
the index (mx,my,mz) for the wave vectork(λ) defined by

k(λ) =

(
2πmx

Lx
,

2πmy

Ly
,

2πmz

Lz

)
, (83)

andM̃ (2)(k) is the Fourier transform ofM (2)(r) defined by

M̃ (2)(k) =
∫

dr M (2)(r) eik·r

=

∫
dr

(
M

(2)
even(r) +M

(2)
odd(r)

) (
cos(k · r) + i sin(k · r)

)

= M̃
(2)
even(k) + (−i)M̃ (2)

odd(k). (84)

Note thatM (2)
even andM

(2)
odd denote the even and odd parts of

M (2) for r.
Once we have the explicit form of̃M (2)(k), the last term

M (2)(r = 0) can be obtained analytically by

M (2)(r = 0) =
1

(2π)3

∫
dk M̃ (2)(k). (85)

Therefore, the infinite lattice summation in Eq. (75) can be
calculated by


U (α) − u∞

Ω
(α) −Ω

∞

0 −E∞

 =


a(αα) · F (α)

c(αα) · T (α)

m(αα) · S(α)



+
∑

γ

∑

β

′
M (1)(x(α) − x(β) + r(γ)) ·


F (β)

T (β)

S(β)



+
1
V

∑

λ

′∑

β

{
M̃

(2)
even(k

(λ)) cos
(
k(λ) ·

(
x(α) − x(β)

))

−M̃ (2)
odd(k

(λ)) sin
(
k(λ) ·

(
x(α) − x(β)

))}
·


F (β)

T (β)

S(β)



−M (2)(r = 0) ·


F (α)

T (α)

S(α)

 , (86)

where the prime on the summation forλ means to exclude
the term withk(λ), which should be canceled by the corre-
sponding exerted pressure gradient.18,47 Mathematically this
is equivalent to the renormalization by Batchelor.48

Here we give the explicit results only fora. The derivations
and the full solutions in FTS version are given in Appendix B.
The matrix in the real space summation is given by

a(1;αβ)
i j (r) = A(r, ξ) δi j + B(r, ξ)

r ir j

r2
, (87)

where

A(r, ξ) =
3aα
4

A0(r, ξ) +
aα

2
+ aβ

2

6
A2(r, ξ)

 , (88)

B(r, ξ) =
3aα
4

B0(r, ξ) +
aα

2
+ aβ

2

6
B2(r, ξ)

 , (89)

A0(r, ξ) =
2ξ
√
π

(
−3+ 2ξ2r2

)
e
− k2

4ξ2 +
erfc(ξr)

r
, (90)

A2(r, ξ) =
2ξ
√
π

1
r2

(
2+ 28ξ2r2 − 40ξ4r4 + 8ξ6r6

)
e
− k2

4ξ2

+2
erfc(ξr)

r3
, (91)

B0(r, ξ) =
2ξ
√
π

(
1− 2ξ2r2

)
e
− k2

4ξ2 +
erfc(ξr)

r
, (92)

B2(r, ξ) =
2ξ
√
π

1
r2

(
−6− 4ξ2r2 + 32ξ4r4 − 8ξ6r6

)
e
− k2

4ξ2

−6
erfc(ξr)

r3
. (93)

The matrix in the reciprocal summation is given by

ã(2;αβ)
i j (k) = 6πaα

1−
aα

2
+ aβ

2

6
k2


(
δi j −

kik j

k2

)

× 1
k2

(
1+

k2

4ξ2
+

k4

8ξ4

)
exp

(
− k2

4ξ2

)
, (94)

and the self part is

a(2;αβ)
i j (r = 0) = δi j

aαξ√
π

[
6− 20

3

(
aα

2
+ aβ

2
)
ξ2

]
. (95)

III. RESULTS AND DISCUSSIONS

In this section, we present numerical results obtained by the
Stokesian dynamics method for the slip particles developedin
the previous section under both open and periodic boundary
conditions.

A. Open Boundary

For the first example of the numerical solution for slip par-
ticles, we study equal-sized particles aligned in the horizontal
line. For no-slip particles, Durlofskyet al.17 showed the re-
sults for a demonstration of Stokesian dynamics. In the con-
figuration, the translational and angular velocities are solved
with a constant force in the perpendicular direction to the
alignment.

1. Drag Coefficient

First, we study the translational velocity. In literature,for
a particleα with the velocityU(α) under the applied forceF,
the drag coefficient defined by

F̂(α) =
F

6πµaU(α)
, (96)

is used to study the falling velocity. Figures 1 and 2 show
results of the no-slip and large slip (γ̂ = 100) cases for various
parameters, the number of particlesN and the particle distance
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FIG. 1: Drag coefficient F/6πµaU(α) for horizontally aligned parti-
cles withN = 7. Here the particle distances arer = 4, 2.6, 2.2, and
2.005. The parameterα is the particle index counting from the center
with 0 to the edge of the configuration. In the left side, the results for
the no-slip particles are shown, while in the right side, those for the
slip particles witĥγ = 100 are shown. Lines are added for eye guide.
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FIG. 2: Drag coefficient F/6πµaU(α) for horizontally aligned parti-
cles with the particle distancer = 2.2 andN = 5, 7, 9, and 15. In
the left side, the results for the no-slip particles are shown, while in
the right side, those for the slip particles witĥγ = 100 are shown,
respectively.

r. From the symmetry, the results are the same with respect
to the center particle, so that we plot the half of the system
from the center. The results for the no-slip particles agree
with those by Durlofskyet al.17 (with their results without
lubrication). From the comparison between the no-slip and the
slip cases, it is found that the drag coefficients are reduced for
the slip particles, while the qualitative behavior looks similar:
The center particle falls faster than the particles near theedge,
the average velocity for larger system (with largerN) is faster
than the smaller system, and the tighter system (with smaller
r) is faster than the wider system.

To see more details, let us focus on the system withN =

 0.8

 0.85

 0.9

 0.95

 1

 0.01  0.1  1  10  100

∧ F
 / 

∧ F
ns

γ /a

α = 0
1
2
3

FIG. 3: Drag coefficientF̂ scaled by the no-slip coefficientF̂ns versus
the slip lengtĥγ for the system withN = 7 andr = 2.2.

7 andr = 2.2. Figure 3 shows the slip-length dependence
of the drag coefficient F̂. It is found that, for each particle
α, F̂ has two asymptotic values in the no-slip and perfect-
slip limits and decreases monotonically asγ̂ increases. This
corresponds to that fact for a single slip particle in Eq. (21)
that the Stokes’ drag forceF(γ) is proportional toΓ2,3, and for
a constant force, the particle falls with the velocity

U(γ) = U0Γ3,2. (97)

This means that the particle with the perfect-slip surface falls
3/2 times faster than that with the no-slip surface.

TABLE I: Fitting parametersmandn in Eq. (98) for the system with
N = 7 andr = 2.2.

α m n
0 2.0002± 0.0001 2.3317± 0.0002
1 2.0036± 0.0006 2.3410± 0.0006
2 2.0510± 0.0070 2.4250± 0.0080
3 1.9998± 0.0001 2.4695± 0.0001

Here we try to fit theγ-dependence of̂F scaled by the no-
slip coefficient F̂ns as

F̂(α, γ̂)

F̂ns(α)
= Γm,n, (98)

where F̂ns(α) = F̂(α, γ̂ = 0). The results of the fitting pa-
rametersm andn are given in Table I. The lines in Fig. 3
are the fitting results with thesem andn. It is found thatm
is almost constant and close to 2, whilen depends on the par-
ticle indexα. Also we note from Fig. 3 that the slip length
γ̂ = 100 is almost in the asymptotic region in the perfect-slip
limit. Therefore, the reduction of the drag coefficient due to
the slip surface in the prefect-slip limit is roughly given by the
ratio of F̂ at γ̂ = 100 to the no-slip case, which can be seen in
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FIG. 4: The drag-reduction ratêFps/F̂ns. The results for the systems
with N = 7 for various particle distancer are plotted in the left, and
thoser = 2.2 for variousN are in the right.

Figs. 1 and 2: The change from the left (no-slip) to the right
(̂γ = 100) is the drag reduction due to the surface slip.

The drag-reduction rate from the no-slip to perfect-slip con-
ditions F̂ps/F̂ns can be estimated by the fitting parameters as

F̂ps

F̂ns

=
m
n
, (99)

whereF̂ps = F̂ (̂γ = ∞). This is because the asymptotic value
of Γm,n is equal tom/n. Figure 4 shows the drag-reduction
rates for the various cases. It is found that the sparse con-
figuration (lagerr) has bigger reduction, the smaller system
(smallerN) has bigger reduction, and the edge (center) parti-
cle always has the biggest (smallest) reduction in the system.
Here we calculated the systems up toN = 15, but the qual-
itatively similar behavior would be obtain for larger system,
where main portion has nearly same velocity and a few parti-
cles near the edges have the smaller one.

2. Angular Velocity

Next, we look at the angular velocity. The results for the
no-slip case agree with those by Durlofskyet al.17 as for the
drag coefficient.

Figure 5 shows the angular velocitiesΩ(α) of particleα di-
vided by the single-particle angular velocityΩ0 = T/8πµa3

for two slip lengths, no-slip and large slip (γ̂ = 100), for the
two systems,N = 15 and 7, with the same particle distance
r = 2.2. It is seen that the slip-length dependence is relatively
small. The center particle has zero rotation (from the symme-
try). The angular velocities of particles from the next to the
center to the third from the edge (α = 5 for N = 15 andα = 1
for N = 7) has just a slight decrease for the large slip length.
The largest influence of the slip length appears on the second
particle from the edge for both cases (atα = 6 for N = 15 and
α = 2 for N = 7). The terminal particles has nôγ-dependence.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

6 4 2 0 1 2 3

Ω
(α

)  / 
Ω

0

α

N = 15 N = 7

no-slip
γ /a=100

FIG. 5: Angular velocitiesΩ(α) divided byΩ0 = T/8πµa3 for the
systems ofN = 15 (on the left side) and 7 (on the right side) with the
same particle distancer = 2.2. The results are given for the no-slip
case and large slip-length case (γ̂ = 100).

One of the reasons why the angular velocity depends very
slightly on the slip length could be because in the present sit-
uation the particles are torque free and therefore all theγ-
dependence onΩ is coming from the disturbance field gen-
erated by the external forceF on the particles. However, if
external torque is applied to the system, it is expected from
the single-body solution in Eq. (27) that theγ-dependence on
the angular velocity would be large. See Sec. III B 2 in the
following for the periodic system.

B. Periodic Boundary

Next, we study the system under the periodic boundary con-
dition. The particle configuration we study is the simple cu-
bic array. The results for no-slip particles are summarizedin
Bradyet al.18 In the following, we see the slip-length depen-
dencies for basic rheological properties, sedimentation veloc-
ity, and the spin and shear viscosities, in details.

1. Sedimentation Velocity

First, sedimentation velocity is calculated, where a con-
stant force is applied to the particles. Here, we study the ve-
locity U divided by the falling velocity for a single particle
U0 = F/6πµa, whereF is the strength of the force. Note that
for the regular array configurations, the sedimentation veloc-
ity for each particles are the same and, as a result, it is equiva-
lent to the problem of fixed particles under a constant velocity,
in other words, a pressure-driven flow in the porous medium.

For no-slip particles in the regular array configurations,
there are theoretical and numerical studies. Hasimoto47 got
the sedimentation velocities for the regular arrays where the
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FIG. 6: Sedimentation velocities for various slip lengthγ divided
by U0 = F/6πµa versus volume fractionφ for the particles in the
simple-cubic array configuration. The horizontal axis is not linear
but φ1/3. The solid line is the dilute limit for the no-slip particles in
Eq. (100) by Hasimoto.47
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FIG. 7: The scaled sedimentation velocitiesU/Uns versus the scaled
slip lengtĥγ, whereUns is the sedimentation velocity for the no-slip
casêγ = 0.

dilute limit form for the simple-cubic array was given by

U(φ, γ̂ = 0)
U0

= 1− 1.7601φ1/3 + φ − 1.5593φ2. (100)

Zick and Homsy49 and Bradyet al.18 showed the numerical
calculations.

Here, calculations for the slip particles including no-slip
case are done by the method in the FTS version formulated
in the previous section (so that lubrication as well as effective
quadrupole contribution in Bradyet al.18 are not included).
The periodic cell contains 8 particles of equal size. Figure6
and Table II showU/U0 for the slip lengthŝγ = 0, 0.01, 0.1,
1, 10, and 100. The no-slip results agree with the dilute limit
theory in Eq. (100) by Hasimoto47 and the corresponding re-

sults by Bradyet al.18 (for 〈M ∗
UF〉 in their notation). The

results for the finite slip lengths show that as the slip length
increases, the sedimentation velocity also increases. In other
words, the particles with larger slip length have less friction.
Figure 7 shows the slip-length dependence on the scaled sed-
imentation velocity defined by

Û(φ, γ̂) =
U(φ, γ̂)
Uns(φ)

, (101)

whereUns(φ) = U(φ, γ̂ = 0). From the results,̂U has two
asymptotes inγ → 0 andγ → ∞. Therefore, we try to fit the
slip-length dependence as

Û(φ, γ̂) = Γm,n, (102)

wherem and n are the fitting parameters depending on the
volume fractionφ. The results formandn by the least-square
fitting for eachφ are summarized in Table III. We find thatn
is not dependent ofφ, and actuallyn = 2 with the error less
than 0.5%. The other parameterm is almost linearly increas-
ing for φ except for the dense region. Note that in the dilute
limit (φ → 0), from the single-body solution in Eq. (21), it is
expected that̂U → Γ3,2. Here, we assume theφ-dependence
of m in the formm(φ) = 3+Aφ. By the least-square fitting for
the range 0≤ φ < 0.4, we haveA = 27.9 ± 0.4. That is, the
scaled sedimentation velocity is approximately given by

Û(φ, γ̂) =
1+ (3+ Aφ)̂γ

1+ 2̂γ
. (103)

Note that, from Eq. (102), the asymptotic value in the
perfect-slip limit ofÛ is m/n, which is the ratio of the mobil-
ities of the perfect-slip to the no-slip. It is an increasingfunc-
tion of φ from 1.5 in the dilute limit to roughly 7 in the dense
case as shown in Fig. 7. As mentioned above, the results
of sedimentation velocity for the regular array can be inter-
preted in terms of the permeability of porous medium for fluid
flow. This implies that the permeability of the perfect-slipar-
rays might be 7 times larger than that of the no-slip arrays
at most in the low porosity limit. This type of large increase
of the permeability would be expected in the nanofluidic de-
vices with the slip surface, although the ratio would depend
on the detailed configurations. According to the lack of lubri-
cation effect in the present formulation, the ratio shown above
is underestimated, and it would be more than that if the con-
tribution of the higher force moments is taken into account.

2. Spin Viscosity

Next, we study the problem with applied torque for the
same configuration. The results are shown in Table IV. From
the single-body solution in Eq. (27), the angular velocity
scaled byΩ0 = T/8πµa3 in the dilute limit becomes

lim
φ→0

Ω(φ, γ̂)
Ω0

= Γ3,0. (104)
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TABLE II: Sedimentation velocitiesU/U0 for various slip lengthγ in the simple-cubic array configuration.

φ γ̂ = 0 γ̂ = 0.01 γ̂ = 0.1 γ̂ = 1 γ̂ = 10 γ̂ = 100
0.001 0.8250 0.8348 0.9084 1.1585 1.3014 1.3227
0.027 0.4990 0.5089 0.5834 0.8368 0.9816 1.0032
0.064 0.3600 0.3701 0.4460 0.7040 0.8514 0.8734
0.125 0.2449 0.2554 0.3335 0.5991 0.7509 0.7735
0.216 0.1599 0.1708 0.2523 0.5293 0.6875 0.7112
0.343 0.1109 0.1224 0.2085 0.5014 0.6688 0.6938
0.450 0.1012 0.1132 0.2033 0.5095 0.6845 0.7107
0.5236 0.1050 0.1173 0.2101 0.5256 0.7058 0.7327

TABLE III: Fitting parametersmandn in Eq. (102).

φ m n

0.001 3.2128 ±3 · 10−5 2.00001 ±2 · 10−5

0.027 4.0313 ±3 · 10−5 2.00004 ±2 · 10−5

0.064 4.86705 ±8 · 10−6 2 ±4 · 10−6

0.125 6.356 ±0.007 2.004 ±0.002
0.216 8.97 ±0.01 2.004 ±0.003
0.343 12.62 ±0.02 2.004 ±0.003
0.45 14.19 ±0.02 2.004 ±0.003
0.5236 14.13 ±0.03 2.006 ±0.004
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FIG. 8: Angular velocityΩ divided by the factorΩ0Γ3,0, the single
slip particle’s result, versus volume fractionφ for the particles in the
simple-cubic array configuration. The solid line is the dilute limit for
the no-slip particles derived from Eq. (107) obtain by Zuzovskyet
al.50 The dashed lines are fitted by Eq. (112).

That is, the angular velocity is diverging in the perfect-slip
limit as seen in Table IV. Figure 8 showsΩ scaled byΩ0Γ3,0.
It is observed that for the no-slip case, the angular velocity Ω
decays forφ, but theφ dependence reduces as the slip length
increases.

This is a mobility problem. For the regular array configura-
tion, again, it is closely related to the corresponding resistance
problem, where the torque is solved under the constant rota-
tion of the particles. The spin viscosityζ is defined by the

ratio of the mean torque to the rotation as

〈T〉 = −µζ〈Ω〉, (105)

where〈·〉 denotes the bulk average. Therefore, for the present
case,〈T〉 = −nT and〈Ω〉 = Ω, wheren is the number den-
sity of particles, andT andΩ are the torque on and angular
velocity of each particle, and we obtain the relation

ζ = 6φ
Ω0

Ω
. (106)

For no-slip particles, Zuzovskyet al.50 gave the dilute limit
for the spin viscosityζ as

ζ = 6φ
[
1− φ + 12(ã20)

2 φ10/3 +O
(
φ14/3

)]−1
, (107)

with ã20 = 0.2857 for the simple cubic lattice. The corre-
sponding angular velocity is shown in Fig. 8 by the solid line.
From the result, however, the no-slip behavior is rather well
represented by the expression withoutO(φ10/3) term

Ωns(φ)
Ω0

= 1− φ. (108)

This is due to the lack of higher force moments in the present
calculations.

To see the slip-length dependence, we define the scaled an-
gular velocityΩ̂ by

Ω̂(φ, γ̂) =
Ω(φ, γ̂)
Ωns(φ)

. (109)

Figure 9 shows the slip-length dependence ofΩ̂. It is seen
that Ω̂ goes to asymptotes in the perfect-slip limit from unity
in the no-slip limit. Therefore, we try to fit̂γ dependence by
the form

Ω̂(φ, γ̂) = Γm,n. (110)

Fitting results for eachφ are summarized in Table V. It is
found again thatn is independent ofφ andn = 3. Form, it is
well represented by

m(φ) =
3

1− Aφ
, (111)
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TABLE IV: Angular velocitiesΩ/Ω0 in the simple-cubic array configuration.

φ γ̂ = 0 γ̂ = 0.01 γ̂ = 0.1 γ̂ = 1 γ̂ = 10 γ̂ = 100
0.001 0.9990 1.0290 1.2990 3.9990 30.9990 300.9990
0.027 0.9730 1.0030 1.2730 3.9730 30.9730 300.9730
0.064 0.9360 0.9660 1.2360 3.9360 30.9360 300.9360
0.125 0.8750 0.9050 1.1750 3.8750 30.8750 300.8750
0.216 0.7840 0.8140 1.0840 3.7840 30.7840 300.7840
0.343 0.6570 0.6870 0.9570 3.6570 30.6570 300.6570
0.450 0.5500 0.5800 0.8500 3.5500 30.5500 300.5500
0.5236 0.4764 0.5064 0.7764 3.4764 30.4764 300.4764
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FIG. 9: The scaled angular velocityΩ/Ωns for the simple-cubic con-
figuration, whereΩns is the angular velocity for the no-slip case.

TABLE V: Fitting parametersm andn in Eq. (110). The data for
φ = 0.001 is fitted only bym with n = 3.

φ m n

0.001 3.003 ±4 · 10−7 − −
0.027 3.0834 ±0.0001 3.00011 ±0.0001
0.064 3.20514 ±4 · 10−5 3.00002 ±4 · 10−5

0.125 3.42854 ±2 · 10−5 2.99997 ±1 · 10−5

0.216 3.82653 ±1 · 10−5 3 ±1 · 10−5

0.343 4.56623 ±1 · 10−5 3.00001 ±7 · 10−6

0.450 5.45454 ±7 · 10−6 3 ±4 · 10−6

0.5236 6.29724 ±2 · 10−5 3.00001 ±1 · 10−5

with A = 1 ± 6 × 10−6. Thus, we conclude that the angular
velocityΩ(φ, γ̂) is expressed by

Ω(φ, γ̂)
Ω0

=
1− φ + 3̂γ

1+ 3̂γ
. (112)

From the results, it is found that the increase of the scaled
angular velocityΩ̂ from the no-slip limit to the perfect-slip
limit, which is the reduction rate of the spin viscosity, is 1
in the dilute limit, but it increases roughly up to twice as the
volume fractionφ increases.
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FIG. 10: Viscosity functionα divided byφ for the simple-cubic con-
figuration. The solid line is obtained from the dilute limit for the
no-slip particles in Eq. (115) by Zuzovskyet al.50

3. Shear Viscosity

The effective viscosity tensorµ∗i jkl relating the bulk stress
〈σ〉 and the bulk rate-of-strain〈E〉 is defined by

〈σi j 〉 = 2µ∗i jkl 〈Ekl〉, (113)

where, for a cubic lattice,µ∗i jkl is given by two scalar functions

α andβ as50,51

µ∗i jkl = µ
(
1+ β

)1
2

(
δikδ jl + δilδ jk −

2
3
δi jδkl

)

+µ
(
α + β

) (
δi jkl −

1
3
δi jδkl

)
. (114)

Here,δi jkl is unity if all the indices are the same and zero oth-
erwise. The bulk stress is given by the stresslet on the particle
S as〈σ〉 = 2µ〈E〉 − n〈S〉, where the first term is the contri-
bution of the fluid andn is the number density of the particle,
so that we can evaluateα andβ by solvingS under the rate-
of-strainE. The results are shown in Table VI.

For no-slip particles, Zuzovskyet al.50 gave the dilute limits
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TABLE VI: Viscosity functionsα andβ divided byφ in the simple-cubic array configuration.

φ α/φ for γ̂ = 0 γ̂ = 0.01 γ̂ = 0.1 γ̂ = 1 γ̂ = 10 γ̂ = 100
0.001 2.5094 2.4375 2.0060 1.2524 1.0310 1.0045
0.027 2.7591 2.6727 2.1644 1.3144 1.0735 1.0449
0.064 3.1537 3.0427 2.4073 1.4078 1.1378 1.1062
0.125 3.9450 3.7787 2.8708 1.5801 1.2571 1.2199
0.216 5.5745 5.2730 3.7515 1.8937 1.4760 1.4289
0.343 9.0255 8.3823 5.4624 2.5007 1.9092 1.8441
0.450 12.4144 11.4696 7.3016 3.2662 2.4822 2.3964
0.5236 13.6821 12.7794 8.5491 4.0221 3.0878 2.9843

φ β/φ for γ̂ = 0 γ̂ = 0.01 γ̂ = 0.1 γ̂ = 1 γ̂ = 10 γ̂ = 100
0.001 2.4979 2.4266 1.9987 1.2495 1.0290 1.0026
0.027 2.4567 2.3874 1.9702 1.2359 1.0189 0.9929
0.064 2.4236 2.3550 1.9424 1.2174 1.0033 0.9777
0.125 2.4135 2.3425 1.9191 1.1886 0.9763 0.9509
0.216 2.4809 2.3992 1.9236 1.1492 0.9342 0.9089
0.343 2.7462 2.6304 1.9984 1.0999 0.8751 0.8491
0.450 3.1952 3.0172 2.1277 1.0627 0.8263 0.7998
0.5236 3.7192 3.4569 2.2611 1.0390 0.7938 0.7668
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FIG. 11: Viscosity functionβ divided byφ for the simple-cubic con-
figuration. The solid line is obtained from the dilute limit for the
no-slip particles in Eq. (116) by Zuzovskyet al.50

for α(φ) andβ(φ) as

α =
5
2
φ
[
1−

(
1− 60b̃20

)
φ + 12ã20φ

5/3 +O
(
φ7/3

)]−1
,(115)

β =
5
2
φ
[
1−

(
1+ 40b̃20

)
φ − 8ã20φ

5/3 +O
(
φ7/3

)]−1
,(116)

where for the simple cubic lattice ˜a20 = 0.2857 andb̃20 =

−0.04655. Note that ˜a20 is the same value for the spin vis-
cosity. Figures 10 and 11 showα/φ andβ/φ for various slip
lengths. Because of the lack of lubrication contribution inthe
present calculations, the diverging behavior of the viscosity
in the closed packing limit is not captured. However, for the
no-slip case, the agreement of the numerical results with the
dilute limit expressions (115) and (116) is very good.
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FIG. 12: The scaled viscosity function̂α versus the scaled slip length
γ̂ for the simple-cubic configuration.

To see the slip-length dependence, we scale the functions
by those for the no-slip case as

α̂ =
α(φ, γ̂)
αns(φ)

, β̂ =
β(φ, γ̂)
βns(φ)

, (117)

whereαns = α(φ, γ̂ = 0) andβns = β(φ, γ̂ = 0). Figures 12 and
13 show the slip-length dependencies ofα̂ andβ̂, respectively.
As similar before, we try to fit them byΓm,n:

α̂(φ, γ̂) = Γmα,nα , β̂(φ, γ̂) = Γmβ,nβ , (118)

where (mα,nα), and (mα,nα) are the fitting parameters. From
the single-body solution (35), the dilute limits for̂α and β̂
should beΓ5,2, that is, it is expected thatm→ 5 andn→ 2 in
the limit φ→ 0 for bothα̂ andβ̂. The results are summarized
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FIG. 13: The scaled viscosity function̂β versus the scaled slip length
γ̂ for the simple-cubic configuration.

TABLE VII: Fitting parametersmandn in Eq. (118).

φ mα nα

0.001 2± 2 · 10−5 5.01127± 4 · 10−5

0.027 2± 1 · 10−5 5.29765± 3 · 10−5

0.064 2± 1 · 10−5 5.72049± 3 · 10−5

0.125 2± 1 · 10−5 6.49001± 3 · 10−5

0.216 2± 1 · 10−5 7.83125± 2 · 10−5

0.343 2± 4 · 10−6 9.82756± 1 · 10−5

0.450 2± 3 · 10−5 10.40260± 1 · 10−4

0.5236 2± 5 · 10−6 9.20504± 2 · 10−5

φ mβ nβ

0.001 2± 3 · 10−5 4.99750± 7 · 105

0.027 2± 3 · 10−5 4.96357± 6 · 105

0.064 2± 6 · 10−6 4.97254± 1 · 105

0.125 2± 2 · 10−5 5.09142± 4 · 105

0.216 2± 2 · 10−5 5.47661± 4 · 105

0.343 2± 2 · 10−5 6.49057± 5 · 105

0.450 2± 1 · 10−5 8.02057± 4 · 105

0.5236 2± 1 · 10−5 9.73869± 4 · 105

in Table VII. At this time, it is found thatm is independent
of φ for α̂ andβ̂, so thatm = 2. The other parametersnα and
nβ can be approximated as

nα = 5+ Aφ, (119)

nβ = 5+ BφC, (120)

with A = 13.9 ± 0.2, B = 28± 2, andC = 2.8 ± 0.1, where,
for nα, two points in dense region (φ = 0.45 and 0.5236) are
ignored. The results are given in Fig. 14.

Similar to the drag coefficient and spin viscosity, the shear
viscosity has the reduction according to the surface slip. Fig-
ures 12 and 13 show that the shear viscosity is reduced to 40%
even in the dilute limit and to 20% in the dense case. It should
be noted that, in the present calculations, lubrication effect
which is dominant in the dense configurations is not included.
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FIG. 14: Fitting parametersnα(φ) andnβ(φ). The solid lines are given
by Eq. (120).

Therefore, at this stage, we do not know whether the diverg-
ing behavior of the shear viscosity (as well as spin viscosity)
in the no-slip limit would hold in the finite slip-length case.

IV. CONCLUDING REMARKS

We have formulated hydrodynamic interaction among
spherical particles with arbitrary sizes and arbitrary slip length
in general linear flows, including constant imposed flow
(pressure-driven flow) and shear flows. It has been imple-
mented into the Stokesian dynamics method for both open and
periodic boundary conditions, for the latter using Ewald sum-
mation technique. We have demonstrated that the formula-
tion is capable of representing the slip boundary conditionon
the surface of particles properly. We have also calculated ba-
sic rheological properties such as sedimentation velocity, spin
and shear viscosities for the entire range of the slip length,
from the no-slip limit (zero slip length) to the perfect-slip limit
(infinite slip length).

From the calculations of particles in unbounded fluid shown
in Sec. III A, it is demonstrated that the drag coefficient de-
pends not only on the number of particles and the separation
but also on the slip length. This implies that the slip length
is one of the important parameters for the mechanism of se-
lection in nanofluidic devices by the difference in the drag co-
efficients (or equivalently, sedimentation velocity). From the
results for regular array configurations in Sec. III B, whichis
closely related to the flow through porous media, it is found
that the drag reduction is enhanced for dense configurations,
about 7 times larger than the no-slip limit. For the spin vis-
cosity, i.e., the torque response on the particles by the applied
rotation, as expected from the single-body solution, the torque
is vanishing in the perfect-slip limit. The volume fractionde-
pendence also reduces to zero in the limit. The reduction of
the rotational drag is also enhanced for the dense configura-
tions, but the rate is up to around 2. For the shear viscosity,
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the reduction due to the surface slip is also obtained. The vis-
cosity reduces to 40% even in the dilute limit and to 20% in
the dense case.

One of the major applications of micro- and nanofluidics is
to make a good device to separate a certain type of compo-
nents (specific DNA or particles with a given size, for exam-
ple) out of the mixtures. Any effect that depends on the prop-
erties of the target like the size or chemical properties canbe
used. The drag coefficient due to the surrounding fluid, which
is discussed in the present article, is one of them. The flows
we have studied in this paper, especially for the regular arrays,
should reflect major physics occurring in the experiments on
nanofluidics for nano-porous media,52 flows around obstacles
in nano channels,53 and other nanofluidic flows.

The formulation of the hydrodynamic theory and imple-
mentation of the numerical scheme in this article is just a first
step to establish a theoretical foundation for nanofluidics. To
achieve the goal, one direction is a multiple scale approach
making a bridge between the present hydrodynamic theory
and the molecular theory. We plan several improvements
for the hydrodynamic theory presented in this paper: (i) The
contribution of higher force moments, which becomes impor-
tant in dense configurations and close geometries, can be in-
corporated into the present formulation by using lubrication
theory.16–18Unfortunately there are no results available at this
moment in literature, but we can use the exact solutions for
two-body problem in the series expression.40 (ii) The Brown-
ian force, another important contribution from the fluid to the
object in nano scale, can be introduced into the framework of
Stokesian dynamics method.22,54–57(iii) It is highly demanded
to solve the hydrodynamic interaction among the objects of ar-
bitrary shape as well as in confinements of arbitrary geometry,
especially for application to nanofluidic devices. One of the
possible solutions is to build a hybrid scheme with boundary
element method15 into the Stokesian dynamics.19 Another ap-
proach is to replace the free-space Green function (the Oseen-
Burgers tensor) by that of the corresponding geometries. For
slip surfaces, however, the available solution is limited to a
single plane.30

Finally, we note that the present formulation is also applica-
ble to microfluidics, too, and many other areas. Actually, the
surface slip appears in various situations,24 including electro-
osmosis2 and non-Newtonian fluids,58,59 where the results of
this article can be used without modifications.
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APPENDIX A: LAMB’S GENERAL SOLUTION

Here, we summarize the derivation of the single body prob-
lem of the slip spherical particle in terms of Lamb’s general
solution with the slip boundary condition.

The disturbance fieldu − u∞ by the presence of a sphere
at the origin is given by Lamb’s general solution in Eq. (9).
This exerts the disturbance stress field, whose tangential com-
ponent (I − nn) · σ′ is given by

(I − nn) · σ′ = µ

r

∑

n

{
−(n+ 2)∇ × (rχ−n−1)

−2(n+ 2)

(
∇ − r

r
∂

∂r

)
Φ−n−1

+
1
µ

(n+ 1)(n− 1)
n(2n− 1)

r2

(
∇ − r

r
∂

∂r

)
p−n−1

}
, (A1)

whereχn, Φn, and pn are the same functions as in Eq. (9).
First, in the slip boundary condition (4), we decompose the
disturbance fields and the imposed flows in the following way:

u(r) − u∞(r) − γ
µ

(I − nn) · (σ′ · n)

= (U +Ω × r) − (U∞ +Ω
∞

× r +E∞ · r)

+
γ

µ
(I − nn) · (σ∞ · n) , (A2)

whereσ∞ is the stress generated by the imposed flowu∞. The
boundary condition is applied, as in literature,12,37 through the
three scalar functions (r/r) · V , −r∇ · V , andr ·∇ × V for
a surface vectorV (θ, φ) assigned on the surfacer = a for a
vector field. The disturbance field in the left-hand side in Eq.
(A2) is expressed by the coefficientspmn, qmn, andvmn in Eqs.
(12), (13), and (14). For the imposed flow in the right-hand
side, we introduce the coefficientsχmn, ψmn, andωmn as

r

r
· V ∞

∣∣∣∣∣
r=a
=

∞∑

n=0

n∑

m=0

χmnYmn(θ, φ), (A3)

−r∇ · V ∞|r=a =

∞∑

n=0

n∑

m=0

ψmnYmn(θ, φ), (A4)

r ·∇ × V ∞|r=a =

∞∑

n=0

n∑

m=0

ωmnYmn(θ, φ), (A5)

whereV ∞ denotes the right-hand side in Eq. (A2) on the
surfacer = a. From the boundary condition (A2), then, we
have three equations between the coefficients (pmn,qmn, vmn)
and (χmn, ψmn, ωmn):

pmn =
2n− 1
n+ 1

Γ0,2n+1ψmn

+
(n+ 2)(2n− 1)

n+ 1
Γ2n,2n+1χmn, (A6)

vmn =
1

2(n+ 1)
Γ0,2n+1ψmn

+
n

2(n+ 1)
Γ2(n+1)(n−1)/n,2n+1χmn, (A7)

qmn =
1

n(n+ 1)
Γ0,n+2ωmn. (A8)

From these equations, we can obtain the solution
(pmn,qmn, vmn) for each problem specified by the coeffi-
cients (χmn, ψmn, ωmn).
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APPENDIX B: EWALD SUMMATION

Here, we give full solutions of the mobility matrix in the
FTS version under the periodic boundary condition outlined
in Sec. II D.

1. Real Space

It is straightforward to obtain the matrix in real-space sum-
mation in Eq. (86) from the expressions of each submatrices
by the derivatives in Eqs. (54) to (59) and those ofR in Eq.
(29) andK in Eq. (38) with the Oseen-Burgers tensor in real
spaceJ (1) in Eq. (78), whose explicit from is given by

J(1)
i j (r) = A0(r, ξ)δi j + B0(r, ξ)

r ir j

r2
, (B1)

whereA0 andB0 are given by Eqs. (90) and (92), respectively.
The scalar functions are given by complementary functions as

xa
12 = A

(0)
1 +A

(0)
2 +

a1
2
+ a2

2

6

(
A(2)

1 +A
(2)
2

)
, (B2)

ya
12 = A

(0)
1 +

a1
2
+ a2

2

6
A(2)

1 , (B3)

yb
12 = B1, (B4)

xc
12 = C1 + C2, (B5)

yc
12 = C1, (B6)

xg
12 = −3

[
G(0)

1 +

(
a1

2

10
+

a2
2

6

)
G(2)

1

]
, (B7)

yg
12 = G

(0)
2 +

(
a1

2

10
+

a2
2

6

)
G(2)

2 , (B8)

yh
12 = H

(0)
1 , (B9)

xm
12 = 6

[
M(0)

3 +M
(0)
5 +

a1
2
+ a2

2

10

(
M(2)

3 +M
(2)
5

)]
,(B10)

ym
12 = 2

[
M(0)

4 +M
(0)
5 +

a1
2
+ a2

2

10

(
M(2)

4 +M
(2)
5

)]
,(B11)

zm
12 = 2

(
M(0)

5 +
a1

2
+ a2

2

10
M(2)

5

)
. (B12)

The functions forxa andya are

A(0)
1 =

ξaα√
π

(
−9

2
+ 3r2ξ2

)
e−ξ

2r2
+

3aα
4r

erfc(ξr), (B13)

A(2)
1 =

1
r2

[
ξaα√
π

3
(
1+ 14ξ2r2 − 20ξ4r4 + 4ξ6r6

)
e−ξ

2r2

+
3
2

aα
r

erfc(ξr)

]
, (B14)

A(0)
2 =

ξaα√
π

(
3
2
− 3r2ξ2

)
e−ξ

2r2
+

3aα
4r

erfc(ξr), (B15)

A(2)
2 =

1
r2

[
−ξaα√

π
3
(
3+ 2ξ2r2 − 16ξ4r4 + 4ξ6r6

)
e−ξ

2r2

−9
2

aα
r

erfc(ξr)

]
. (B16)

The function foryb is

B1 = −
ξaα√
π

3aα
2r

(
1− 6ξ2r2 + 2ξ4r4

)
e−ξ

2r2 − 3a2
α

4r2
erfc(ξr).

(B17)

The functions forxc andyc are

C1 = −
ξaα√
π

3a2
α

4r2

(
1+ 14ξ2r2 − 20ξ4r4 + 4ξ6r6

)
e−ξ

2r2

− 3a3
α

8r3
erfc(ξr) (B18)

C2 =
ξaα√
π

3a2
α

4r2

(
3+ 2ξ2r2 − 16ξ4r4 + 4ξ6r6

)
e−ξ

2r2

+
9a3

α

8r3
erfc(ξr) (B19)

The functions forxg andyg are

G(0)
1 =

ξaα√
π

3aα
2r

(
−1+ 2ξ2r2

)
e−ξ

2r2 − 3a2
α

4r2
erfc(ξr) (B20)

G(2)
1 =

1
r2

[
ξaα√
π

3aα
r

(
3+ 2ξ2r2 − 16ξ4r4 + 4ξ6r6

)
e−ξ

2r2

+
9a2

α

2r2
erfc(ξr)

]
, (B21)

G(0)
2 =

ξaα√
π

3ξ2aαr
(
−2+ ξ2r2

)
e−ξ

2r2
(B22)

G(2)
2 =

1
r2

[
ξaα√
π

3aα
r

(
3+ 2ξ2r2 + 26ξ4r4 − 26ξ6r6 + 4ξ8r8

)
e−ξ

2r2

+
9a2

α

2r2
erfc(ξr)

]
, (B23)

The function foryh is

H (0)
1 = −

ξaα√
π

3a2
α

4r2

(
3+ 2ξ2r2 − 16ξ4r4 + 4ξ6r6

)
e−ξ

2r2

− 9a3
α

8r3
erfc(ξr). (B24)

The functions forxm, ym, andzm are

M(0)
3 = −

ξaα√
π

3a2
α

2r2

(
1− 2ξ2r2

)
e−ξ

2r2 − 3a3
α

4r3
erfc(ξr) (B25)

M(2)
3 =

1
r2

[
ξaα√
π

3a2
α

10r2

(
3+ 2ξ2r2 − 16ξ4r4 + 4ξ6r6

)
e−ξ

2r2

+
9a3

α

20r3
erfc(ξr)

]
, (B26)
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M(0)
4 =

ξaα√
π

3a2
α

4r2

(
3+ 2ξ2r2 + 8ξ4r4 − 4ξ6r6

)
e−ξ

2r2
+

9a3
α

8r3
erfc(ξr)

(B27)

M(2)
4 =

1
r2

[
−ξaα√

π

3a2
α

10r2

(
15+ 10ξ2r2 + 4ξ4r4 + 32ξ6r6

−30ξ8r8 + 4ξ10r10
)
e−ξ

2r2

−9a3
α

4r3
erfc(ξr)

]
, (B28)

M(0)
5 =

ξaα√
π

3ξ2a2
α

(
−2+ ξ2r2

)
e−ξ

2r2
(B29)

M(2)
5 =

1
r2

[
ξaα√
π

3a2
α

10r2

(
3+ 2ξ2r2 + 26ξ4r4 − 26ξ6r6 + 4ξ8r8

)
e−ξ

2r2

+
9a3

α

20r3
erfc(ξr)

]
. (B30)

2. Reciprocal Space

Fourier transform of the Oseen-Burgers tensor in the recip-
rocal partJ (2) is

J̃i j (k) =
∫

dr eik·rJ(2)
i j (r) =

(
δi j − k̂i k̂ j

)
k2J(k), (B31)

wherek̂ = k/|k| and

J(k) =
8π
k4

(
1+

k2

4ξ2
+

k4

8ξ4

)
exp

(
− k2

4ξ

)
. (B32)

With this expression and Eqs. (54) to (59), the submatrices
are obtained as

a(2)
i j =

3aα
4

1− k2 aα
2
+ aβ

2

6


(
δi j − k̂i k̂ j

)
k2J(k), (B33)

b(2)
i j =

3a2
α

8
(−i)ǫi jk k̂kk

3J(k), (B34)

c(2)
i j =

3a3
α

16

(
δi j − k̂i k̂ j

)
k4J(k), (B35)

g(2)
i jk = −

3a2
α

8

1− k2


aα

2

10
+

aβ
2

6


 (−i)

(
k̂ jδik + δ jkk̂i

−2k̂i k̂ j k̂k

)
k3J(k), (B36)

h(2)
i jk =

3a3
α

16

(
ǫikl k̂ j k̂l + ǫ jkl k̂i k̂l

)
k4J(k), (B37)

m(2)
i jkl =

3a3
α

16

1− k2 aα
2
+ aβ

2

10


(
k̂ j k̂lδik + k̂ j k̂kδil

+k̂i k̂lδ jk + k̂i k̂kδ jl − 4k̂i k̂ j k̂kk̂l

)
k4J(k). (B38)

Thus, Eq. (94) has been derived.

3. Self Term in Reciprocal Space

The self term in reciprocal part is evaluated by the inverse
Fourier transform of the reciprocal part obtained in the previ-
ous section.

Because the submatricesb(2) andg(2) are odd functions ofk
as shown in Eqs. (B34) and (B36), they go to zero. Although
h(2) is an even function ofk as in Eq. (B37), the angle integral
gives

∫
dk̂

(
ǫil j k̂l k̂k + ǫilk k̂l k̂ j

)
=

4π
3

(
ǫil j δlk + ǫilkδl j

)
= 0, (B39)

so that it also vanishes. Therefore, onlya(2), c(2), m(2) are
left.

To evaluatea(2), let us split the integral into two parts, radial
integral fork and solid-angle integral for̂k. From Eq. (B33),

a(2)
i j (r = 0) =

1
(2π)3

∫ ∞

0
dk

3aα
4

1−
aα

2
+ aβ

2

6
k2

 k4J(k)

×
∫

dk̂
(
δi j − k̂i k̂ j

)
. (B40)

To calculate the radial integrals, we use the recurrence relation
Gn = 2(2n− 1)ξ2Gn−1 with the initial conditionG0 = ξ

√
π for

Gn defined by

Gn =

∫ ∞

0
dk k2ne−k2/4ξ2

. (B41)

The radial integral fora(2) is, then,

1
(2π)3

∫ ∞

0
dk

3aα
4

1−
aα

2
+ aβ

2

6
k2

 k4J(k)

=
1
π3/2

3aαξ
4

3− 20ξ2 aα
2
+ aβ

2

6

 . (B42)

The angle integral is
∫

dk̂
(
δi j − k̂i k̂ j

)
= 4π

(
1− 1

3

)
δi j . (B43)

Therefore, Eq. (95) is obtained:

a(2)
i j (r = 0) =

aαξ√
π

6− 20ξ2 aα
2
+ aβ

2

3

 δi j . (B44)

Forc(2), from Eq. (B35) we have

c(2)
i j (r = 0) =

3a3
α

16
1

(2π)3

∫ ∞

0
dk k6J(k)

×
∫

dk̂
(
δi j − k̂i k̂ j

)
. (B45)

The radial integral is

3a3
α

16
1

(2π)3

∫ ∞

0
dk k6J(k) =

15a3
α

4
ξ3

π3/2
. (B46)
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The angle integral is the same fora(2)
i j . Therefore,

c(2)
i j (r = 0) =

10a3
αξ

3

√
π

δi j . (B47)

Form(2), from Eq. (B38),

m(2)
i j (r = 0) =

3a3
α

16
1

(2π)3

∫ ∞

0
dk

[
1− k2

10

(
aα

2
+ aβ

2
)]

k6J(k)

×
∫

dk̂
(
k̂ j k̂lδik + k̂ j k̂kδil

+k̂i k̂lδ jk + k̂i k̂kδ jl − 4k̂i k̂ j k̂kk̂l

)
. (B48)

The radial integral is

3a3
α

16
1

(2π)3

∫ ∞

0
dk

[
1− k2

10

(
aα

2
+ aβ

2
)]

k6J(k)

=
3a3

α

16
1
π3/2

[
20ξ3 − 126

5
ξ5

(
aα

2
+ aβ

2
)]
. (B49)

The angle integral gives
∫

dk̂
(
k̂ j k̂lδik + k̂ j k̂kδil + k̂i k̂lδ jk + k̂i k̂kδ jl − 4k̂i k̂ j k̂kk̂l

)

=
8π
5

{(
δ jlδik + δ jkδil

)
− 2

3
δi jδkl

}
, (B50)

where we use the result21

∫
dk̂ k̂i k̂ j k̂kk̂l =

4π
15

(
δi jδkl + δikδ jl + δilδ jk

)
. (B51)

Therefore,

m(2)
i j (r = 0) =

a3
αξ

3

√
π

[
6− 189

25
ξ2

(
aα

2
+ aβ

2
)]

×
{(
δ jlδik + δ jkδil

)
− 2

3
δi jδkl

}
. (B52)

The corresponding scalar functions are

xm(2)
αβ
= ym(2)

αβ
= zm(2)

αβ
=

a3
αξ

3

√
π

[
12− 378

25
ξ2

(
aα

2
+ aβ

2
)]
.

(B53)
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