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Hydrodynamic interaction among rigid nanoparticles in laminar flow with Nav#&ip boundary condition
on the nanoparticles’ surfaces is formulated. The single-particle prolteler the general linear flow is solved
in terms of the Lamb general solution, and the velocity field exerted by theatifcle is expressed in terms
of the multipole expansion in the force moments. Thereby, the mobility matdrixafmany-body system is
constructed with Faén's laws for the force, torque and the stresslet, and is extended taipesistems by
the Ewald summation technique. Using this formulation, the Stokesian dysaneithod is generalized to slip
particles with arbitrary slip length. The method is applied to a system in an ndeduluid and to a system
with periodic boundary conditions. The mobility problem with constant féocghe former and sedimentation
velocity (drag cofficient) and spin and shear viscosities for the latter are solved. A compasisoade with
the existing results for no-slip particles. According to the surface slip,gtieations of friction (drag force),
spin and shear viscosities are observed for the problems with the apmiéged forque, and shear, respectively.
In particular, we show that just changing the slip properties of the naticpasurface, one can control
the drag force within an order of magnitude. The slip-length dependeoicthe drag caicient and other
rheological properties are useful for rational design of nanofluidiéags, including controllable manipulation
and separation of large biomolecules in nanofluidic channels.
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I. INTRODUCTION cal theories. The focus of this article is the former, whieh d
scribes the fluid flows by the Stokes equation and uses a single
parameter called the “slip length” characterizing the lotam
condition in the nano scale. At this point, it is worth to note
that, at least for straight channel flows, molecular dynamic
imulations confirmed that the hydrodynamic theory works at
e scale larger than 10 molecular diametérs.

Microfluidics and nanofluidics enable analytical methods
and devices for controlling and manipulating fluid flows at
small length scale5* For nanoparticles, it is typically less
than a micrometer. This subject has recently received a
enormously large attention by growing interests to the nan-
otechnology and its application in biophysics, biochergist ~ Hydrodynamic interaction in Stokes flow has been ac-
and medicine. In nanofluidic devices, the hydrodynamic inively studied in fluid mechani¢$'*and successfully applied
teraction of the target object to the system boundary througfor colloidal suspensions and polymer solutidfis\ typical
the fluid dominates the intermolecular interactions. Beeau length scale there is down to only micrometers. The inter-
changing the shape afod the material of the instrumentality action is obtained by solving the boundary value problem on
is feasible and that changing intrinsic intermoleculacés the surface of the objects on which the conventional no-slip
is not, nanofluidic devices turned to be much more flexibleboundary condition is applied. Because of the long-range an
to control the system function than conventional experiaen Mmany-body nature of the interaction, computational meshod
setups where the bulk character of the fluid dominates. Ilare notjust a numerical tool but an important theoreticat-co
lustrative examples where it can be used are given by expeponent for understanding the physics. There exist a variety
iments on separatién’ and single molecule detecti®i® of of numerical formulations: Among them, boundary element
biomolecules. One of the important mechanisms in these pranethod is widely used for deformable objettsand Stoke-
cesses is the hydrodynamic interaction. sian dynamics method is for solid particfést®Usually, cal-
culations of full hydrodynamic interaction is computatidig
heavy, although several improvements have been proposed to
ease the heavy load:??Because of the computational cost, in

veral practical occasions, hydrodynamic interactiaften

nored or replaced by a simpler form (like the point force ap

At present, study in the field is driven largely by experimen-
tal works, and there is a general lack of theoretical re$earc
For further progress and breakthrough, it is inevitablerio u
derstand physics of processes in fluids in nanometer scale

theoretical framework based on solid foundation capable o imati irical : del h Hosi
explaining the existing results and of predicting new pmeno proximal lon) or emP'”ga MESOSCOpIC MOGEIS Such as assIp
ive particle dynamic$® However, for the present purpose of

ena that might happen in such devices. A possible theoretf!

cal account combines hydrodynamic and statistical meehanFhsetaht;lijsgggntg;}(t‘:?];est'gﬁl ifr:]i)rgﬁgr?{ I:(Iloer wggﬂg'ﬂg?gﬁom_

promise on it.

One of the problems of the application of the hydrody-
*Electronic addressindriy . kovalenko@nrc-cnrc.gc.ca namic theory in Stokes flows for nanofluidics is on the no-



slip boundary condition. Recently, by the ability to probe no-slip and (partial) slip. In most cases in fluid mechartios,
small length scales and to fabricate surfaces with variousormer is widely used, while the latter is recently gettirtg a
properties, apparent violations of the no-slip boundanmy-co tention especially at small scale fluid flo’fs?’
dition at the liquid-solid interface in nano scale have been The slip boundary condition had been proposed in such
ported even for simple liquidé2” The slip boundary condi- long time ago, however, the solutions are very limited, com-
tion was first proposed by Navi@rin 19th century, the early pared with those for the no-slip boundary conditions: Basse
age of fluid mechanics, when the proper boundary conditionsolved the flow of single particle with slip surfat&f-elderhof
(mainly between no-slip and partial-slip) were discussed i solved the problems for single partigteand two particles?
the first place® For gas flows, Maxwell had shown that the Bltawzdziewiczet al. showed the interaction between the slip
surface slip is related to the non-continuous nature of gds a particles and lubrication functions for the axisymmetrio-m
the slip length is proportional to the mean-free p&tRor lig-  tion for the study of surfactant-covered drdsind Luo and
uids, on the other hand, from experiments at that age the ndozrikidis studied two slip spheres under the shear ¥fothe
slip boundary condition was accepted by the 1900s, and singaoint force solution in semi-infinite space with a flat plafe o
then had been treated as a fundamental law. By recent exained by Blaké& for no-slip condition was recently extended
tensive studies on the surface slip in micro and nano scales) the slip condition by Lauga and Squir€sThe extension of
the physics of the liquid-solid slip is realized to be muchreno the exact two-body solution for no-slip particiéso the slip
complicated than that for gases. There are many factordwhigparticles was done by Ying and Peférfor the gas-solid sys-
would afect the surface slip including individual molecular tem and by Keh and Ch&hand one of the present autfdr
interaction, surface roughness, surface charge, andngetti for the liquid-solid system.
condition, and at this stage it is too early to make any conclu In this section, we briefly review the boundary conditions,
sive consensus about the physics of the liquid-solid%Iis. and give the single-body solution of the Stokes equation un-
In this article, we focus on the formulation of the hydro- der the general linear flows. For many-body problem, we con-
dynamic interaction among rigid spherical particles withia  struct the mobility matrix obtained by the multipole expans
trary slip length, and therefore, this formulation is apghle  of the velocity field and Faén’s laws for the force, torque, and
to nanofluidic situations. We also extend the Stokesian dystresslet. Finally, the formulation is extended to the quiid
namics method for slip particles in terms of the theory. Thesystems in terms of Ewald summation technique.
formulation in this article is limited to spherical objeck$ow-
ever, using spheres as building blocks to form a desirecctbje
we are able to simulate motions of polymer chains (as well as A. Navier's Boundary Condition
more complex structures) in fluid flow. Moreover, systems
with confined geometries such as a porous medium can be The conventional no-slip boundary condition for the veloc-
simulated by mimicking them with particles fixed in spde. ity field « on a surface is given by
The point of these applications is that the hydrodynamic in-

teraction among those objects is fully taken into account, a [u - us] (y)=0 foryes, (2)
though the modeling of objects by spheres has its own limita-
tion. wherew® is the velocity of the surface. For a rigid spherical

The paper is organized as follows: In Sec. I, we describeparticle with the translational velocify and angular velocity
hydrodynamic interaction among spherical particles witira €, it is given by
trary slip length. The results are implemented in the Stiakes S
dynamics method. In Sec. Ill, we present the numerical solu- u(y) =U + 2 X (y — zo). (3)
tions for particles in unbounded fluid as well as particles in
the cubic array configuration with the periodic boundary-con
dition, and discuss the results. The conclusions of thislart
are presented in Sec. IV.

wherex is the center of the particle.
Instead of the no-slip boundary condition (2), Navier'gsli
boundary conditioff is given by

u-w®|@) = 2 (I - nn) - (@ -m), )
II. HYDRODYNAMICS FOR SLIP PARTICLES a
wherey is the slip lengthI is the unit tensorp is the unit
In low-Reynolds number flows such as liquid flows in Normal vector of the surface, amdis the stress tensor of the

nanofluidic devices, the fluid motion is governed by the Ssoke fluid defined by

equation o = =PI+ (V) + (Vu)]. )
—VP +uV?u = 0, (1)

The symbolf denotes the transposition of the tensor. Note
with the incompressibility conditio'’V - w = 0, whereP is  that (T — nn) is the projection to the tangential component.
the pressurey is the viscosity, ande is the velocity of the  This slip boundary condition (4) exhibits kinematic bounda
fluid. The problem of fluid mechanics is given by the bound-condition for the normal component
ary value problem at the boundary of the fluid. On the liquid-
solid interface, there are two types of the boundary cooj n- (u - us) =0, (6)
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and the slip velocity for the tangential component which iswhere factord,, represent the correction due to the surface

proportional to the velocity gradient as slip and are defined as
(I—nn)~<u—u5) 1+my
mn = Tn? (18)
=y -nn)- {n . [(Vu) + (Vu)T]} )
In definition (18),y is the scaled slip length introduced as the
The proportionality factoy has the dimension of length. ratio of the slip lengthy and the particle radiua
~_7
=7, 19
=3 (19)

B. Single Body Problem

The force acting on the particle is given by the fmgéentspmn

The fluid flow around a single spherical particle with the of Lamb's general solution &%
slip surface was first described by Bas&t Here we con-

sider a more general case and derive the solution for a sphere F = 4mpa[por2 — pui (T +17)]. (20)

moving with the translational veloci®/ and rotational veloc- \\here 4, and 7 are the unit vectors i, y, andz direc-

ity €2 in an arbitrary linear flow tions, respectively. Note that the appearance of the inaagin
uwW=U+Q°xr+E°-r, (8)  unitin the expression of force is due to the complex form of

the spherical harmonics in Eq. (12) and, as a result, the coef
ficients pmp are also complex numbers. However, the physi-
cal quantities like force” in Eq. (20) as well as torque and
stresslet in the following remain real. From Eq. (12), theéo

wherer is the relative vector from the particle centerao
The disturbance field (velocity relative to the imposed flow)
at a positionz is expressed by Lamb’s general solufibf? as

() —u(z) = Z V X 1o+ VO, + CanV& N Dnr& ’ on the sphere translating with the velodityin z direction is
n H (*é) F = 6rual3U 3. 1)
whereyn, ®,, andp, are harmonic functions inth order, and  Substituting the solutions in Egs. (15), (16), and (17) into
the codficientsC,, andD, are given by (9), the velocity field generated by the translating sphsre i
n+3 obtained as
Ch= — | (10)
2(2n+3)n+1) 1 a2_,
—u” = —|(1+Tgo—=V -F 22
Dp= —— (11) o 8ﬂﬂ(+°’26 )J ’ (22)

@n+3)n+1)
The integem runs from—co to oo in general, but for the outer WhereJ is the Oseen-Burgers tensor:
problem where the solution goes to zero at infinity, it is lim- 1 i
ited to the negative integers. The stress tensor is givehéy t Jij(r) = - (6ij + —2) (23)
velocity field (9) through Eq. (5). Let us expand harmonic ' '
functions by the spherical harmoni¥gs, = Py(cosf)e™ as This solution is identical to that in literatufé33

D1 n 1 7a\n+t For rotating sphere with the angular velocfty= (0, 0, Q)
B Y emg (7)) Ymle  2) wehave
m=0
n a\n+l Pmn = Vmn = 0, (24)
o1 = ) Gm(2) Yanl6.0), (13) G = 3 030m00ns (25)
m=0
n a\m The torque acting on the particle is given by the fiiognts
Opg = Zana(F) Ymn(6, ¢), (14) Omn 2837
m=0

_ 2 ~ _ A~ LN
wherea is the radius of particle. The polar axis of the spher- T = 8mpa’ |12 -t (% + )] (26)

ical coordinate systenT.(§. ¢) is taken inz direction. The  Therefore, the torque on the sphere rotating with the angula
codfficients Pmn, Omn, @NdVmn are obtained by the boundary yelocity Q2 in z direction is

condition (4) on the particle surface. (See Appendix A for

details.) T = 8nua®l3Q3. (27)
For the translating sphere with the velocliy = (0, 0, U), ] ) )
we have This agrees with the results by Felderffaind Padmavattet
3 al.*3 Note that the torqud” would vanish for the sphere with
Pmn = EUFZ,S(SmO(Snl, (15)  the perfect-slip surface (fgr = «). The velocity field is then
1 given by
Vinn = ZUFO,35n06nl, (16) 1
u-u”=-—R-T, (28)

Omn = 0, a7) 8mu
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where exerted by a particle ato with the forceF, torqueT’, and
; 1 stressletS as
Rij(r) = 6ijkr—§ = 26K (Viedi = Vidi) (29) )
u(x) — u™(x) = 1 (1 + Foza—Vz) J(x - xo)- F
andej is the Levi-Civita alternating tensor, that isy = 1 8 )
for (i, j,K) = (XY, 2) and its even permutations] for the odd a?v?
permutations, and 0 otherwise. +R(x - x0) - T - (1 + FO,Zl_O) K(x - o) : S} ,
For a sphere in a linear flow with the rate-of-strain tensor (39)
given by
1 whereJ, R, and K are given by Egs. (23), (29), and (37),
-Ej = E(sz - §5ii)’ (30)  respectively. Similar to the no-slip cabethis is in the form
of multipole expansion by the force moments. Note that this
we have is exact only for the single body problem, but for general sit
10 uations like many-body problems, it is valid only for the far
_ field where the contribution of the higher force momentsritha
Prn = EaEFz,sémoénz, (31) F, T, andS) are negligible. Here, we define the levels of the
1 truncation, F, FT, and FTS versions: In F version, we only
Vi = éaErO’S(SmO(S“Z’ (32) take F, in FT version, we take up t@, and in FTS version,
Omn = O. (33) we take up tcS.

From the expression, we also obtain Ea% laws for the
The stresslet on the particle is given by the fieentspmn  slip particle as

ad2.44
2
1 _ ) a 2 ’
S = 277,uaz{p02 (22 - §)I) F = 6mualas [U -—u - (1 + Fo,ng )u (aso)], (40)
—p12[22 + 22 + 1 (92 + 29)] T = 8rua’los [Q -Q° - %V X u’(a:o)] , (41)
+2p2[2X — gy +i(Zy + gaz-)]}. (34) 20
= §7T/Ja3rz,5{0 - E~

Therefore, the stresslet on the sphere in the shear flow with a2v2\ 1
the parametek is - (1 + 1"0,21—0) > [V + (Vu)T] (wo)}, (42)
20 .1
S = gmuaTzsk(22 - 1) (35)  wherew is the undisturbed velocity field. From these expres-

sions, we can construct the mobility equation
The velocity field generated by a sphere in a shear flow is

given by U - u® abg)(F
Q-0% | = hRl-lTH, 43
. 1 272 oo bch ! (43)

u-u®=——|1+Tgo—|K: S, (36) g hm
8ru 10
where where each element in the vectok$ € u*, 2 — Q*,0 - E*)
and (F, T, S) contains the quantities for all particles in the

Kije(r) = _3rir,-rk 37) system. That is, foN-particle system,F and T have 3\
'k rs elements and has N (in reduced form, becaus®; is sym-

. . , metric and traceless). When we write the element explicitly,
Note thatK' is "?"Ways multiplied with .the second-_rank eN- Greek lettersy andg are used for the particle and Roman let-
sorlof symmetric and traceless, and it can be written by th‘?ersi, j, andk are for the spacial indices, y, andz. Note
derivative ofJ as that each submatrix in Eq. (43) hadfdrent dimension. In
1 the following, we scale the submatrices fas;, §) interaction
E(VkJii + V). (38) by 6ru(a,)" with n = 1 fora, n = 2 for b, b, g, andg,
andn = 3 for the others, and therefore, all matrices are di-
mensionless. This nondimensionalization reduces to that i
C. Far-Field Effect conventional Stokesian dynamiés® for monodisperse case.
As shown laterp, g, andh are related to the counterpatts
From the solution for a single sphere with slip surface ex-g, andh, respectively.
pressed by Lamb’s general solution, we have the velocity fiel From the symmetry of the problem, the submatrices in Eq.

Kijk =



(43) can be written by scalar functions‘as written by the derivatives of, R, and K as
P o= 3@ ee + Y3 (5 - ee (44)
a” czﬁe j+ ap \“1] eeg),
b% = P ena. 45 @
J Yo (45) af? = %(1+ %VZ) Jij(r), (54)
cﬁﬁ = xfyﬁe‘ej +yflﬁ(6ij —aej), (46) 302
N 1 b2 = —H v 55
gijﬁ = Xgﬁ(aej—éfSij)e« g g WYk i(r): (55)
34
+y; (a0 + €10k — 26 €/) . (47) G = —g akVkR;(r), (56)
af . o 2 =2 =2
hijk - Qﬁ(aEJk|a+eJEIk|a)’ (48) gllﬁ — _3& 1+ ai_}_ai VZ
B _ §xm e._@ ( _éﬂ) ] 8 10 6
mj"' T "B e, 3 & 3 X{V]‘Jik(T)+Viij(T)}, (57)
+@ dil& + €j0i& + edika + €5 12 _ Saf R R
> (8518 + €5 & + 8 ke + ejdika h2 = ?{VJR,k(r)+V,R,k(r)}, (58)
—-4deeje@ 3a’ a4+ 3
o) i - - B2 )
i (616 + 8381 — 81} ° 10
+—- (0ikOjl + 0jkOil — 0ijokI
2 VRO IR X{VjKikI("')"‘Vinkl(T)}’ (59)
+€ €0k + 0ij&8E + 6 €&
—80j16& — €j6iI& — k8 — ejéika), (49)
. . herea, is defined b
wheree = r/|r| is the unit vector of the center-to-center vec- WhETea, 1s defined by
torr = 2 — 2, For the self partd = 5),
— - 1M
X1 =Y = 1:; 32 (50) & = a, T, (60)
Xi1=VYi = ngg” (51)
9 «
X1 =Yn=2) = EF(SQ (52)

andr = @ — (M. Here, to simplify the expressions, we use
some properties such &8V2J = 0 andV?R = 0. Note that
and the others are zero, where the slip faé{g} for particle ~ the minus signs irb andg are due to the oddness property
«a is defined by about the vector for R, K, andV J. The submatrices, g,
andh are related to the counterparts as

ay + My,
r = 2 e 53
™A, Ny, 3)

b

ij (61)

I
—_—
B
N —

N
ol
N
\‘l—‘

Note that the above expressions as well as those in the follow ar \2
ing are applicable for the case where the slip lengths (als wel gﬁﬁ = - (—1) gﬁ}l (62)
as the radii) of particles areféirent (independently).

3
he = (3) R (63)
For the interaction parta{ # 8), the submatrices can be 1k ay) I
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After some calculations, we obtain the scalar functions as submatrices:, etc. are defined by as same as before. Be-
cause of the long range nature of the interaction, Eq. (75)

e, = o (a_12 n a—22) 1 (64) with the infinite summation is dlicult to evaluate. By Ewald

2r 28’ summation techniqu¥,*>*®we can rewrite the infinite sum-
3 o o\ & mation for the periodic images by two finite summations in
Viz = 4r +(a1 *é )4r3’ (65) real and reciprocal spaces.
3a§ First, we split the Oseen-Burgers tendg(r) into two parts
Y2 = 25 (66) as
4r2
3 3
X, = F"";, (67) 3i(r) = 3.8 + 32, 9), (77)
3 3
Ve, = _%’ (68) where
2 IV ¢) = (V36 - V,V ) r erfcgr), 78
o (@ &\ - .,Z(Té-‘) (V261 - ViV,)r erfr) (78)
127 g2 (10 6 ) 2r4” I2r,8) = (V26 - ViV))r erf(er), (79)
2 =2 2
a a2\ 9
y‘iz = (1—10 + %) Z—ai, (70)  with the error function erff) and its complementary erfx),
r Because all submatrices in the mobility matrix in Eq. (43) ar
y = 9a§ 7 given by the derivatives aff through Eqgs. (54) to (59) with
12 = T3 (71) (29) and (38), the splitting is simply applicable to themréle
9a3 27a§ £ is an arbitrary parameter characterizing the division into
Xpp = o3 (a_12 + a_z) 5 (72)  the real and reciprocal parts. Usually we take the value with
3 r3 which the division is equal where the computational load is
yn = 9a; (a_12 4 a—zz) 18a (73)  Minimized. Because of the factor edfc), J @ and its deriva-
127 g 5r5 tives decay rapidly for. Therefore, we can truncate the lattice
o 2 9a§ summation fory at some point.
7 = (al ta ) 105" (74) The other contributions coming frod® are handled in the

reciprocal space i (the Fourier transformed space). First,
For no-slip equal spheregy(= &, = a), these reduce to the we rewrite the summation as
results by Durlofskyet all”

F®

3 S MO - g 4 0| 7O

D. Ewald Summation 7 B S

F®

In the theory above, we can handle many particles in un- = Z Z MOz — 2B 4 p0). { T®)
bounded fluid. However, we may want to introduce periodic y B S®

boundary conditions, so as to model some sort of systems like F@

dispersions and porous media. M =0).| T® 80
Under the periodic boundary condition, in the FTS version, (r=0) S@ ' (80)

we have to take into account the periodic images as

where M@(r) just denotes the whole matrix fou,(8) inter-

(@ _ 5, (a) . (@)
g(w) B S‘” B a(w) . 5(0) action coming fromJ®. The point is that the summation for
0- B~ ¢ (@) . gla) the particleg in the second line is running for all particles
1" ' including @, the self contribution. Applying Poisson’s sum
a® plp) gles) F®y formula
337 bep cod ped |(@@ 2@ 1 p0). | TO N N
(07 (&7 (&7 1 0 i
y B g( B) h( B) m( B) S(‘B) Z F(nL) — [ Z f dy F(y)é2nmy/L’ (81)
(75) n=—co m=—co ¥/~
wherey is an index (. n,.n,) for the lattice vector® de- for the three-dimensional lattice summation, we have
fined by 1
Z M@ +r0) = = Z e‘”“”)'TJ\A/_f(Z)(kw)
) = (nyLy, nyLy, Nl 76 Ve
r xLx, NyLy, NzLz}, (76) Y
1 —
— (2) (1.(4 )
Ly, Ly, andL; are the linear dimensions of the cell, and the RV Z [Me"e“(k( ))cos(k( . r)
A

prime on the summation for the partigdelenotes that the self —0
term (8 = a) for the primary cellr® = 0 is excluded. The -~ MG (kD) sin®™ '7")], (82)



whereV = L,LyL, is the volume of the periodic cell,denotes
the index (ny, my, m;) for the wave vectok™ defined by

k) = 2nmy 2nmy 2xmy,
L' L L)

(83)

and M@(k) is the Fourier transform abZ@(r) defined by

M®@(k) = f dr MO(r) gk

f dr (M) + MEr)) (cos(k 7)) +isin(k - r))

MGL{k) + (—i) MO(K).

(84)

Note thatM{, and M%), denote the even and odd parts of

M® forr. ~
Once we have the explicit form a¥Z?)(k), the last term
M@(r = 0) can be obtained analytically by

1 f dk MP(k).

M(Z)(T = 0) = W

(85)

Therefore, the infinite lattice summation in Eq. (75) can be

calculated by

U@ _ > al) . p@
Q@ _ cla) . @)
0-Ex m@ . §@)
F®
n Z Z MO(g@ — 26 4 z0).| 7O
Y B S®)
1 ’ —
= @ (1) @ (@ _ £®
+VZ;%;*WWAk ) cos(kW - (@) - 20))
F®
BT KD sin(k - () - M))} | o
S®)
F@
~M®@r=0)-| T |, (86)
S(@)

2 _&erfcgr)
Ao(r, &) = ﬁ(_‘% 26°r%)e ¥ + — (90)
2 1 &
Ao(r,é) = Er (2+28¢%r% — 40" + 8¢%r%) e
+2erf::§§r)’ (91)
2¢ -2 erfcgr)
Bo(r,&) = %(1— 26%r%) e 4 + —, (92)
2 1 -2
Bo(r,&) = N (-6 — 4¢2r2 + 326*r* — 85r6) e 4
erfcr)
-6 e (93)
The matrix in the reciprocal summation is given by
=2 , =2
@ a +3 kik;
37 (k) = 6ra, [1- TkZ) (5” - k—z‘)
2 k4 2
Xﬁ(l-’- @ + @)exp( 4{2), (94)
and the self part is
@ ¢ 20, __
a?P(r=0) = (sijﬁ [6— E(a“ +aﬁ2)§2}. (95)

Ill. RESULTS AND DISCUSSIONS

In this section, we present numerical results obtained &y th
Stokesian dynamics method for the slip particles develaped
the previous section under both open and periodic boundary
conditions.

A. Open Boundary

For the first example of the numerical solution for slip par-
ticles, we study equal-sized particles aligned in the tontial
line. For no-slip particles, Durlofskgt all” showed the re-
sults for a demonstration of Stokesian dynamics. In the con-

where the prime on the summation férmeans to exclude figuration, the translational and angular velocities algesb
the term withk™, which should be canceled by the corre- with a constant force in the perpendicular direction to the

sponding exerted pressure gradigtt! Mathematically this
is equivalent to the renormalization by Batchéfor.

Here we give the explicit results only far The derivations
and the full solutions in FTS version are given in Appendix B.

The matrix in the real space summation is given by

a0 = ATLE) 6y +BLO L (87)
where
3a, &ty
Arg) = j(%ma+3{§i&ma} (88)
3 —2 | =2
B €) = {?(%«fr+iigfﬂsxna} (®9)

alignment.

1. Drag Cogjficient

First, we study the translational velocity. In literatufer,
a particlea with the velocityU® under the applied forcE,
the drag cofficient defined by

F

@)=
(@) 6rual@

(96)

is used to study the falling velocity. Figures 1 and 2 show
results of the no-slip and large slip € 100) cases for various
parameters, the number of particsind the particle distance
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FIG. 1: Drag cofficient F/6zuaU® for horizontally aligned parti-

cles withN = 7. Here the particle distances are- 4, 26, 22, and

2.005. The parameter is the particle index counting from the center

FIG. 3: Drag cofficientF scaled by the no-slip cdigcientF s versus
the slip lengthy for the system wittN = 7 andr = 2.2.

with O to the edge of the configuration. In the left side, the results for
the no-slip particles are shown, while in the right side, those for the . .
slip particles withy = 100 are shown. Lines are added for eye guide./ @ndr = 2.2. Figure 3 shows the slip-length dependence

of the drag coficient F. It is found that, for each particle

06 Y Y Y Y Y Y @, F has two asymptotic values in the no-slip and perfect-
N N=§ :%: slip limits and decreases monotonicallyyamcreases. This
no-slip 9 A corresponds to that fact for a single slip particle in Eq.)(21
Q 15 <7 that the Stokes’ drag forde(y) is proportional td", 3, and for
T 057 A 1  aconstant force, the particle falls with the velocity
- W Yoy o _
g w Sl viasio U(y) = Uol'a2. (97)
\ o4 /S O
E oal A kd A ] _ _ : .
© * V\V s & 7 This means that the particle with the perfect-slip surfatis f
=~ - - A ' i -sli
L V‘V"v——v——gg,. R o 3/2 times faster than that with the no-slip surface.
N
03} T 1 - . :
TABLE I: Fitting parametersnandn in Eq. (98) for the system with
. . . . . . N =7andr =22.

6 4 2 0 2 4 6 @ m n
a 0 20002+ 0.0001 23317+ 0.0002
1 20036+ 0.0006 23410+ 0.0006
FIG. 2: Drag cofficient F/6ruaU® for horizontally aligned parti- 2 20510+ 0.0070 24250+ 0.0080
cles with the particle distanae= 2.2 andN = 5, 7, 9, and 15. In 3 19998+ 0.0001 24695+ 0.0001

the left side, the results for the no-slip particles are shown, while in
the right side, those for the slip particles wigh= 100 are shown,

respectively. Here we try to fit they-dependence dF scaled by the no-

slip codficientFns as

r. From the symmetry, the results are the same with respect
to the center particle, so that we plot the half of the system
from the center. The results for the no-slip particles agree _ _
with those by Durlofskyet all” (with their results without whereFps(a) = F(a,7 = 0). The results of the fitting pa-
lubrication). From the comparison between the no-slip ardt rametersm andn are given in Table I. The lines in Fig. 3
slip cases, it is found that the drag @@gients are reduced for are the fitting results with thesa andn. It is found thatm
the slip particles, while the qualitative behavior looksiar: is almost constant and close to 2, whildepends on the par-
The center particle falls faster than the particles neaetlye,  ticle indexa. Also we note from Fig. 3 that the slip length
the average velocity for larger system (with lar§8ris faster 7 = 100 is almost in the asymptotic region in the perfect-slip
than the smaller system, and the tighter system (with smalldimit. Therefore, the reduction of the drag ¢beient due to
r) is faster than the wider system. the slip surface in the prefect-slip limit is roughly giventhe

To see more details, let us focus on the system Witk ratio of F aty = 100 to the no-slip case, which can be seen in

(98)
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FIG. 4: The drag-reduction rat&,s/Fns. The results for the systems FIG. 5: Angular velocities2® divided by Qo = T/8rua? for the

with N = 7 for variqus particlg distanpeare plotted in the left, and systems oN = 15 (on the left side) and 7 (on the right side) with the

thoser = 2.2 for variousN are in the right. same particle distanae= 2.2. The results are given for the no-slip
case and large slip-length case< 100).

Figs. 1 and 2: The change from the left (no-slip) to the right

W;hloc?) IS thg drgg reducft|on d#e to thﬁ surfac;a Sl'p'l. One of the reasons why the angular velocity depends very
_The drag-reduction rate from the no-slip to perfect-slip€o g;vhyy on the slip length could be because in the present si
ditions Fps/Fns can be estimated by the fitting parameters as | ation the particles are torque free and therefore allythe
_ dependence of® is coming from the disturbance field gen-
is _m (99) erated by the external forde on the particles. However, if
Frs n’ external torque is applied to the system, it is expected from
the single-body solution in Eq. (27) that thedependence on
wherefps = I?(’f = o). This is because the asymptotic value the angular velocity would be large. See Sec. IlIB2 in the
of ['mn is equal tom/n. Figure 4 shows the drag-reduction following for the periodic system.
rates for the various cases. It is found that the sparse con-
figuration (lager) has bigger reduction, the smaller system
(smallerN) has bigger reduction, and the edge (center) parti-
cle always has the biggest (smallest) reduction in the syste
Here we calculated the systems upNo= 15, but the qual-

B. Periodic Boundary

itatively similar behavior would be obtain for larger syste Next, we study the system under the periodic boundary con-
where main portion has nearly same velocity and a few partidition. The particle configuration we study is the simple cu-
cles near the edges have the smaller one. bic array. The results for no-slip particles are summarined

Brady et al!® In the following, we see the slip-length depen-
dencies for basic rheological properties, sedimentateocy
2. Angular Velocity ity, and the spin and shear viscosities, in details.

Next, we look at the angular velocity. The results for the
no-slip case agree with those by Durlofsiyall” as for the
drag codficient.

Figure 5 shows the angular velociti@ of particlea di-
vided by the single-particle angular veloc®y = T/8rua® First, sedimentation velocity is calculated, where a con-
for two slip lengths, no-slip and large slig & 100), for the  stant force is applied to the particles. Here, we study the ve
two systemsN = 15 and 7, with the same particle distance locity U divided by the falling velocity for a single particle
r = 2.2. Itis seen that the slip-length dependence is relativelyJo = F/6rua, whereF is the strength of the force. Note that
small. The center particle has zero rotation (from the symmefor the regular array configurations, the sedimentationael
try). The angular velocities of particles from the next te th ity for each particles are the same and, as a result, it ivaqui
center to the third from the edge € 5forN = 15anda =1  lentto the problem of fixed particles under a constant vétoci
for N = 7) has just a slight decrease for the large slip lengthin other words, a pressure-driven flow in the porous medium.
The largest influence of the slip length appears on the second For no-slip particles in the regular array configurations,
particle from the edge for both casesd¢at 6 forN = 15and there are theoretical and numerical studies. Hasifdaot
a = 2forN = 7). The terminal particles has fyredependence. the sedimentation velocities for the regular arrays whieee t

1. Sedimentation Velocity



10

sults by Bradyet al!® (for (M) in their notation). The
results for the finite slip lengths show that as the slip Iengt
increases, the sedimentation velocity also increasesthir o
words, the particles with larger slip length have less ifsitt

1 Figure 7 shows the slip-length dependence on the scaled sed-
imentation velocity defined by

| 0=

U/ U,

(101)

whereUns(¢) = U(¢,7 = 0). From the resultsy has two
asymptotes iy — 0 andy — oo. Therefore, we try to fit the
slip-length dependence as

U(¢.%) = L. (102)

FIG. 6: Sedimentation velocities for various slip lengtiiivided ~ Wherem andn are the fitting parameters depending on the
by Up = F/6rua versus volume fractios for the particles in the Volume fractions. The results fomandn by the least-square
simple-cubic array configuration. The horizontal axis is not linearfitting for eachg are summarized in Table Ill. We find that
but ¢/, The solid line is the dilute limit for the no-slip particles in is not dependent af, and actuallyn = 2 with the error less
Eqg. (100) by Hasimotd! than 0.5%. The other parametaris almost linearly increas-
ing for ¢ except for the dense region. Note that in the dilute

8 w w w w limit (¢ — 0), from the single-body solution in Eq. (21), itis

©=0.5236 O
045 © expected thal — I's,. Here, we assume thiedependence
8-%2 ®  of minthe formm(g) = 3+ Ag. By the least-square fitting for
0125 a therange (x ¢ < 0.4, we haveA = 27.9 + 0.4. That is, the
0.064 v scaled sedimentation velocity is approximately given by
0 0.027 v
- U@, 9) = ——————. (103)
S 1+2y

Note that, from Eq. (102), the asymptotic value in the
perfect-slip limit ofU is m/n, which is the ratio of the mobil-
ities of the perfect-slip to the no-slip. It is an increasfogc-
tion of ¢ from 15 in the dilute limit to roughly 7 in the dense
case as shown in Fig. 7. As mentioned above, the results
/ of sedimentation velocity for the regular array can be inter

y/a preted in terms of the permeability of porous medium for fluid
flow. This implies that the permeability of the perfect-sdip
FIG. 7: The scaled sedimentation velociti¢flJ,s versus the scaled rays might be 7 times larger than that of the no-slip arrays
slip lengthy, whereU,s is the sedimentation velocity for the no-slip at most in the low porosity limit. This type of large increase
casey = 0. of the permeability would be expected in the nanofluidic de-
vices with the slip surface, although the ratio would depend
on the detailed configurations. According to the lack of lubr
cation dfect in the present formulation, the ratio shown above
U,7 = 0) " R is underestimated, and it would be more than that if the con-
Us =1-17601"" + ¢ — 1.5593%". (100) tribution of the higher force moments is taken into account.

dilute limit form for the simple-cubic array was given by

Zick and Homs§® and Bradyet al® showed the numerical
calculations. 2. Spin Viscosity

Here, calculations for the slip particles including ngsli
case are done by the method in the FTS version formulated Next, we study the problem with applied torque for the
in the previous section (so that lubrication as well isdtive  same configuration. The results are shown in Table IV. From
quadrupole contribution in Bradgt al'® are not included). the single-body solution in Eq. (27), the angular velocity
The periodic cell contains 8 particles of equal size. Fidure scaled by = T/8muad in the dilute limit becomes
and Table Il showdJ /Uy for the slip lengthg = 0, 0.01, 01,
1, 10, and 100. The no-slip results agree with the dilutetlimi lim

A0 _p (104)
theory in Eq. (100) by Hasimotband the corresponding re- -0 Qo O
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TABLE II: Sedimentation velocitiet) /U, for various slip lengthy in the simple-cubic array configuration.

P 7=0 7 =001 7=01 y=1 7 =10 7 =100
0.001 0.8250 0.8348 0.9084 1.1585 1.3014 1.3227
0.027 0.4990 0.5089 0.5834 0.8368 0.9816 1.0032
0.064 0.3600 0.3701 0.4460 0.7040 0.8514 0.8734
0.125 0.2449 0.2554 0.3335 0.5991 0.7509 0.7735
0.216 0.1599 0.1708 0.2523 0.5293 0.6875 0.7112
0.343 0.1109 0.1224 0.2085 0.5014 0.6688 0.6938
0.450 0.1012 0.1132 0.2033 0.5095 0.6845 0.7107
0.5236 0.1050 0.1173 0.2101 0.5256 0.7058 0.7327

" . ratio of the mean torque to the rotation as
TABLE IllI: Fitting parametersnandnin Eq. (102). q

¢ m n (T) = —ug(Q), (105)
0.001 32128 +3-10°° 200001 +2-10°
0.027 40313  +3.10° 200004 +2.10°  Where(:) denotes the bulk average. Therefore, for the present
0.064 486705 +8-10° 2 +4.10° case(T) = —nT and(Q) = Q, wheren is the number den-
0.125 6356 +0.007 2004 +0.002 sity of particles, and™ andQ are the torque on and angular
0.216 897 +0.01 2004 +0.003 velocity of each particle, and we obtain the relation
0.343 1262 +0.02 2004 +0.003
0.45 1419 +0.02 2004 +0.003 Qo
0.5236 143 +003 2006  +0.004 {=6p— (106)

For no-slip particles, Zuzovskgt al>° gave the dilute limit

y/a=100 [] for the spin viscosity as
1 O
1 0.1 A - -1
noslp @ {=60[1-¢+12(80)¢'7°+0(¢"%)| . (107)
o
o with 8,9 = 0.2857 for the simple cubic lattice. The corre-
L 1 sponding angular velocity is shown in Fig. 8 by the solid line
O.'o From the result, however, the no-slip behavior is rathet wel
= represented by the expression with@{®'%?) term
G |
Ondl9) =1-¢. (108)
Qo

0.4 ‘ ‘ This is due to the lack of higher force moments in the present
' 0 0.2 0.4 0.6 calculations.
To see the slip-length dependence, we define the scaled an-

¢ gular velocityQ by
FIG. 8: Angular velocityQ divided by the factof,I's, the single . Q(¢,7)
slip particle’s result, versus volume fractigrfor the particles in the Qp,7) = i (209)
simple-cubic array configuration. The solid line is the dilute limit for Qns(¢)
the no-slip particles derived from Eq. (107) obtain by Zuzovsky -
al.5° The dashed lines are fitted by Eq. (112). Figure 9 shows the slip-length dependenceof It is seen

thatQ goes to asymptotes in the perfect-slip limit from unity
in the no-slip limit. Therefore, we try to fif dependence by

That is, the angular velocity is diverging in the perfedp-si the form

limit as seen in Table IV. Figure 8 showsscaled byQol'3p.

It is observed that for the no-slip case, the angular veldeit
decays forp, but the¢ dependence reduces as the slip lengt
increases.

Q(¢,7) = Tmn. (110)

Iﬂ'Fitting results for eaclp are summarized in Table V. ltis

o -~ . found again thah is independent o andn = 3. Form, it is
This is a mobility problem. For the regular array configura-yell represented by

tion, again, it is closely related to the correspondingstasice
problem, where the torque is solved under the constant rota- 3 111
tion of the particles. The spin viscosityis defined by the m(¢) = 1-A¢’ (111)



12

TABLE IV: Angular velocitiesQ/Qq in the simple-cubic array configuration.

P =0 7 =001 7-01 -1 7-10 3 =100
0.001 0.9990 1.0290 1.2990 3.9990 30.9990 300.9990
0.027 0.9730 1.0030 1.2730 3.9730 30.9730 300.9730
0.064 0.9360 0.9660 1.2360 3.9360 30.9360 300.9360
0.125 0.8750 0.9050 1.1750 3.8750 30.8750 300.8750
0.216 0.7840 0.8140 1.0840 3.7840 30.7840 300.7840
0.343 0.6570 0.6870 0.9570 3.6570 30.6570 300.6570
0.450 0.5500 0.5800 0.8500 3.5500 30.5500 300.5500
0.5236 0.4764 0.5064 0.7764 3.4764 30.4764 300.4764
2.2 [ ' ' ' T ¢=05236 O no-sip @
045 © y/a=0.01 A
0343 o 01 ©
0216 & 1 0O
0125 4 100 [
0064 v ]
0027 v
0001 ©

Q/ Qg

0.01 01 1 10 100

yl/a

0.6

FIG. 9: The scaled angular velocify/ Qs for the simple-cubic con-  FiG. 10: Viscosity functionr divided byg for the simple-cubic con-
figuration, whereQ,s is the angular velocity for the no-slip case. figuration. The solid line is obtained from the dilute limit for the
no-slip particles in Eq. (115) by Zuzovslky al >°

TABLE V: Fitting parametersn andn in Eq. (110). The data for

¢ = 0.001 is fitted only bymwith n = 3. 3. Shear Viscosity

1) m n
0.001 3003 +4.1077 - - The dfective viscosity tensomy, relating the bulk stress
0.027 30834  +0.0001 300011 +0.0001 (o) and the bulk rate-of-strai(E) is defined by
0.064 320514 +4-10° 3.00002 +4-10°
0.125 342854 +2.10° 299997 +1.10° N o
0.216 382653 +1-10° 3 +1-10° @ij = 2uija (i), (113)
0.343 456623 +1-10° 3.00001 +7-10°° , _ o _
0.450 545454 +7.10°° 3 +4.10°6 where, for a cubic |attIC&4i*jk| is given by two scalar functions
0.5236 629724 +2-10°5 3.00001 +1-10°5 a andg as05!
. 1 2
. Kija = #(1 +,3)§ Sidji + G S — 36ij0u

with A = 1+ 6 x 10°%. Thus, we conclude that the angular
velocity Q(¢,y) is expressed b 1

y Q(4,7) p y +,u(a +ﬁ) (5ijk| - §5ij5kl) . (114)

Qpy) 1-¢+3y
0 " 1em (112)

Here,dij is unity if all the indices are the same and zero oth-
erwise. The bulk stress is given by the stresslet on thegharti
From the results, it is found that the increase of the scaled as(o) = 2u(E) — n(S), where the first term is the contri-
angular velocityQ from the no-slip limit to the perfect-slip bution of the fluid andh is the number density of the particle,
limit, which is the reduction rate of the spin viscosity, is 1 SO that we can evaluateandg by solving.S under the rate-
in the dilute limit, but it increases roughly up to twice as th of-strainE. The results are shown in Table VI.

volume fractiony increases. For no-slip particles, Zuzovsket al>° gave the dilute limits
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TABLE VI: Viscosity functionse andg divided by¢ in the simple-cubic array configuration.

¢ al/¢pfory=0 7 =001 7=01 7=1 7 =10 7 =100
0.001 2.5094 2.4375 2.0060 1.2524 1.0310 1.0045
0.027 2.7591 2.6727 2.1644 1.3144 1.0735 1.0449
0.064 3.1537 3.0427 2.4073 1.4078 1.1378 1.1062
0.125 3.9450 3.7787 2.8708 1.5801 1.2571 1.2199
0.216 5.5745 5.2730 3.7515 1.8937 1.4760 1.4289
0.343 9.0255 8.3823 5.4624 2.5007 1.9092 1.8441
0.450 12.4144 11.4696 7.3016 3.2662 2.4822 2.3964
0.5236 13.6821 12.7794 8.5491 4.0221 3.0878 2.9843
¢ Bl¢fory =0 7 =001 7=01 7=1 7 =10 7 =100
0.001 2.4979 2.4266 1.9987 1.2495 1.0290 1.0026
0.027 2.4567 2.3874 1.9702 1.2359 1.0189 0.9929
0.064 2.4236 2.3550 1.9424 1.2174 1.0033 0.9777
0.125 2.4135 2.3425 1.9191 1.1886 0.9763 0.9509
0.216 2.4809 2.3992 1.9236 1.1492 0.9342 0.9089
0.343 2.7462 2.6304 1.9984 1.0999 0.8751 0.8491
0.450 3.1952 3.0172 2.1277 1.0627 0.8263 0.7998
0.5236 3.7192 3.4569 2.2611 1.0390 0.7938 0.7668
4 ‘ ‘ no-slip @ ©=0.001 O
y/a=0.01 A 0.027 =
N 01 v 0.064 ©
1 O 0125 e
37 1 100 [ 0216 &
0.343 &
045
S ) Ve \Y4 0.5236 «
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OO O O ©)
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0 y/a

FIG. 11: Viscosity functiorB divided by¢ for the simple-cubic con-  FIG. 12: The scaled viscosity functi@versus the scaled slip length
figuration. The solid line is obtained from the dilute limit for the 7 for the simple-cubic configuration.
no-slip particles in Eq. (116) by Zuzovsly al *°

To see the slip-length dependence, we scale the functions

for a(¢) andB(¢) as by those for the no-slip case as
5 ~ - — ) - )
@ = 59|11~ (1~ 6080) 9 + 12806%° + O (¢ {115) &= ‘;("5(3, = ‘;(‘p(g, (117)

5
B =3¢ [1 (1 + 40b20) ¢ — 83,00 + O( 7/3)] (116)  whereans = a(¢,7 = 0) andBns = B¢, 7 = 0). Figures 12 and
13 show the slip-length dependencie&@ndg, respectively.

where for the simple cubic lattica,g = 0.2857 andby, = As similar before, we try to fit them by :
—0.04655. Note thaby is the same value for the spin vis- .
cosity. Figures 10 and 11 shaw¢ andg/¢ for various slip a(#,7) =Tm.n,»  B@.Y) = Ty (118)

lengths. Because of the lack of lubrication contributiothe

present calculations, the diverging behavior of the vigos Where (. n.), and (n,. n,) are the fitting parameters. From
in the closed packing limit is not captured. However, for thethe single-body solution (35), the dilute limits far and 3
no-slip case, the agreement of the numerical results with thshould bels, that s, it is expected that — 5 andn — 2iin
dilute limit expressions (115) and (116) is very good. the limit ¢ — 0O for both@ andB. The results are summarized
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FIG. 13: The scaled viscosity functigiversus the scaled slip length FIG. 14: Fitting parameters,(¢) andn(¢). The solid lines are given
7 for the simple-cubic configuration. by Eq. (120).

TABLE VII: Fitting parametersnandn in Eq. (118). Therefore, at this stage, we do not know whether the diverg-

@ m, Ny ing behavior of the shear viscosity (as well as spin visgdsit
0.001 2+2.10°% 5.01127+ 4- 105 in the nO'SIip limit would hold in the finite Slip-length case
0.027 2+1-10° 5.29765+ 3- 10°°
0.064 2+1-10° 572049+ 3-10°°
0.125 2+1-10° 6.49001+ 3-10°° IV. CONCLUDING REMARKS
0.216 2+1-10° 7.83125+ 210
0.343 2+4.10° 9.82756+ 1-10° . .

0.450 243.10°5 1040260+ 1- 104 We. have formulgted h_ydrodynamlc mte_ractlon ~among
0.5236 2+5.10° 9.20504+ 2-10°5 spherical particles with arbitrary sizes and arbitrany Ength
in general linear flows, including constant imposed flow

@ my ng (pressure-driven flow) and shear flows. It has been imple-
0.001 243.10°5 499750+ 7 - 10P menteq into the Stokesig_n dynamics method f_or both open and
0.027 2+3.10° 4.96357+ 6- 1C° periodic boundary conditions, for the latter using Ewalthsu
0.064 2+ 61076 497254+ 1 - 10° mation technique. We have demonstrated that the formula-
0.125 2+2-10° 5.09142+ 4 - 10° tion is capable of representing the slip boundary condition
0.216 2+2-10° 547661+ 4 - 10° the surface of particles properly. We have also calculated b
0.343 2¢2-10° 6.49057+5-10°  sijc rheological properties such as sedimentation velcgjiiy
0.450 2+1-10° 802057+ 4-10°  and shear viscosities for the entire range of the slip length
0.5236 2:1-10° 9.73869£4-1C°  from the no-slip limit (zero slip length) to the perfectpslimit

(infinite slip length).

From the calculations of particles in unbounded fluid shown
in Table VII. At this time, it is found thamis independent in Sec. Il A, it is demonstrated that the drag fiagent de-
of ¢ for @ andB, so thatm = 2. The other parameterg and  pends not only on the number of particles and the separation

ng can be approximated as but also on the slip length. This implies that the slip length
is one of the important parameters for the mechanism of se-
n, = 5+ Ag, (119)  lection in nanofluidic devices by theftirence in the drag co-
N = 5+ BgC, (120) efficients (or equivalently, sedimentation velocity). Frore th

results for regular array configurations in Sec. 111 B, whigsh

with A=139+0.2,B=28=+2,andC = 28+ 0.1, where, closely related to the flow through porous media, it is found
for n,, two points in dense regio (= 0.45 and 06236) are  that the drag reduction is enhanced for dense configurations
ignored. The results are given in Fig. 14. about 7 times larger than the no-slip limit. For the spin vis-

Similar to the drag ca@icient and spin viscosity, the shear cosity, i.e., the torque response on the particles by théeapp
viscosity has the reduction according to the surface slig- F rotation, as expected from the single-body solution, thgue
ures 12 and 13 show that the shear viscosity is reduced to 409 vanishing in the perfect-slip limit. The volume fractida-
even in the dilute limit and to 20% in the dense case. It shoulghendence also reduces to zero in the limit. The reduction of
be noted that, in the present calculations, lubricatiiect  the rotational drag is also enhanced for the dense configura-
which is dominant in the dense configurations is not includedtions, but the rate is up to around 2. For the shear viscosity,
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the reduction due to the surface slip is also obtained. The vi  The disturbance field — «* by the presence of a sphere

cosity reduces to 40% even in the dilute limit and to 20% inat the origin is given by Lamb’s general solution in Eq. (9).

the dense case. This exerts the disturbance stress field, whose tangential ¢
One of the major applications of micro- and nanofluidics isponent { — nn) - o’ is given by

to make a good device to separate a certain type of compo-

nents (specific DNA or particles with a given size, for exam- (I-nn) o = H Z{_(n +2)V X (ry-n-1)

ple) out of the mixtures. Anyféect that depends on the prop- r <

erties of the target like the size or chemical propertieshmn

used. The drag cdéigcient due to the surrounding fluid, which -2(n+2) (V - fﬁ) D 1

is discussed in the present article, is one of them. The flows ror

we have studied in this paper, especially for the regulayatr 1(n+1)(n-1) ,(, T8 (A1)
should reflect major physics occurring in the experiments on pn ni2n-1) ror -1y,
nanofluidics for nano-porous mediflows around obstacles ) ]

in nano channel® and other nanofluidic flows. whereyn, @n, andp, are the same functions as in Eq. (9).

The formulation of the hydrodynamic theory and imple- First, in the slip boundary condition (4), we decompose the
mentation of the numerical scheme in this article is justs fir disturbance fields and the imposed flows in the following way:
step to establish a theoretical foundation for nanofluidics

0 Y ’
achieve the goal, one direction is a multiple scale approach u(r) —u”(r) - u (I -nn)-(o"-n)
king a bridge between the present hydrodynamic theory o0 o0 00
ma ) = U+ xr)—-(U+Q° xr+E”-r)
and the molecular theory. We plan several improvements y
for the hydrodynamic theory presented in this paper: (i) The o (I-nn) (6™ -n), (A2)

contribution of higher force moments, which becomes impor-

tant in dense configurations and close geometries, can be inhereo™ is the stress generated by the imposed figw The
corporated into the present formulation by using lubrimati boundary condition is applied, as in literatd?€’ through the
theory!®-18 Unfortunately there are no results available at thisthree scalar functions-(r) -V, -rv -V, andr - V x V for
moment in literature, but we can use the exact solutions foa surface vectok’ (6, ¢) assigned on the surface= a for a
two-body problem in the series expressf8ifii) The Brown-  vector field. The disturbance field in the left-hand side in Eq
ian force, another important contribution from the fluiditet (A2) is expressed by the ciientspmn, Gmn, andvmn in Egs.
object in nano scale, can be introduced into the framework of12), (13), and (14). For the imposed flow in the right-hand
Stokesian dynamics methd8°4-57(iii) It is highly demanded  side, we introduce the céiEientSymn, ¥mn, andwmn as

to solve the hydrodynamic interaction among the objects-of a

bitrary shape as well as in confinements of arbitrary geometr . _ AN

especially for application to nanofluidic devices. One @ th rad r—a Z_:J) Z:A)X""”Ym”(e’ 9 (A3)
possible solutions is to build a hybrid scheme with boundary n;, mﬁ

element metho into the Stokesian dynamié& Another ap- V-V, = Z Z"/’ Yonl6, 6) (Ad)
proach is to replace the free-space Green function (ther®see = prfeard mn M

Burgers tensor) by that of the corresponding geometries. Fo o n

slip surfaces, however, the available solution is limitedht PV XV = Z ZwmnYmn(G, ), (A5)
single plane® e

Finally, we note that the present formulation is also agplic - . o
ble to microfluidics, too, and many other areas. Actuallg, th Where V™ denotes the right-hand side in Eq. (A2) on the

surface slip appears in various situatihcluding electro- ~ Surfacer = a. From the boundary condition (A2), then, we
osmosié and non-Newtonian fluid®59 where the results of Nave three equations between thefio@nts Emn, Gmn, Vmn)

this article can be used without modifications. and fymn, Ymn, Wmn):
2n-1
Ack o t Pmn = n+ 1 Iﬁ0,2n+1lﬁmn
cKnowledgments n+2)2n-1
+ M I'on2ns ¥ mns (A6)

n+1
This work was supported by the National Research Council

(NRC) of Canada. We express our gratitude to Professor D. Vmn = mrozm'ﬁmn
Jed Harrison for stimulating discussions.

n
+2(n + l)rz(n+1)(n*1)/n,2n+1/\/mn, (A7)
APPENDIX A: LAMB’'S GENERAL SOLUTION Omn = ﬁro ne2Wmn. (A8)
nin + :

Here, we summarize the derivation of the single body prob+rom these equations, we can obtain the solution
lem of the slip spherical particle in terms of Lamb’s general(pmn, Omn, Vmn) fOor each problem specified by the dhe
solution with the slip boundary condition. cients fmn ¥mn, Omn)-
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APPENDIX B: EWALD SUMMATION ﬂ(O) 632 (2 32 ) o %erfc(gr), (815)
T
Here, we give full solutions of the mobility matrix in the AD — [ faa 34 2¢2r2 _ 16644 + 4£506) e €1
FTS version under the periodic boundary condition outlined 2 72 \/E ( 27 & 2 )
in Sec. IID. 9a,
———erfc@r)} . (B16)
2r
The function fory® is
1. Real Space éa, 3aa - 404\ g8 _ 3a2
By = \/_ o (1 6ETe + 2671 ) a2 —erfc(ér).
It is straightforward to obtain the matrix in real-space sum (B17)
mation in Eqg. (86) from the expressions of each submatrice .
by the derivatives in Eqgs. (54) to (59) and thoselbfn Eq. The functions fon® andy* are
(29) andK in Eqg. (38) with the Oseen-Burgers tensor in real £a, 322 22
spaceJ® in Eq. (78), whose explicit from is given by Ci1= T ma? (1 + 14622 - 205% + 4€6r6) et
nr 3% ) (B18)
3P = Aolr. )51 + Bo(r. ) 5 . (81) &
3a
szga(l42(3 2{[_-22 1&4r +4§66) 252
whereAy andBg are given by Egs. (90) and (92), respectively. Vr 4
The scalar functions are given by complementary functiens a a3 % orteen) (B19)
8 3
al+ 32 The functions forx? andy? are
@, = A9+ AD 4 B 1E gaz (AP +A2). (B2 ¥ ,
3a, 2,2 3an
a2+ 32 GO = $a 3 g, 2£2r2) et — “Zerfcgr)  (B20)
Vi, = ﬂ&0)+ %ﬂ(ﬁ), (B3) 1 Vr2r ( ) 4r2
1|éa, 3a, _
¥, = B, (B4) G? = r_z[% (342672 - 166 4 46%0) e
Yi, = C1, (B6) +ﬁerfc(§r)], (B21)
2 =2
X, = [g(o) ( ai)g(f)}, (B7)
©,° GO = L2z r(-2+&4?%) et (B22)
%)\ @ (B8) ? \/_ a{' ¢
Vi = G+ ( —)g : B8
N 100 G? = = [@ 33, (3+ 262 + 266 — 266%r° + 45 %) et
Vi, = HY, (B9) Va1
—2 2 9 2
XD, = 6[M(30)+ MO LA 1+0a2 (MO + MQ)](BlO) +%erfc(§r)], (B23)
=2 , 52 . .
a +a
V. 2[M2°)+Mg))+ 1 1+0 > (M22)+M§32))](Bll) The function fory” is
3a( 2,2
HO = £, 38, 34 22212 — 16644 + 455) @€
ZTZ — 2(M,(50) + ;aZM(z)) (BlZ) 1 \/— Ar Ae2 ( )
Sa*; erfe(r). (B24)

The functions for® andy? are
The functions fox™, y™, andz™ are

. 38 3a)
AV = i (—S—) + 3r2§2) et 4 %erfc(fr), (B13) MY = R i (1-2£7r%) e - A%erfc(gr) (B25)

\/; \7 2r?
Y 3 _&2,2
AP = = [{7‘7_; (1 + 14¢%r% - 2064 + 4§6r6) g’ MP = = [f\?‘_ 1;“2 (3 +28%r2 — 16544 + 4§6r6)e &

+g%erfc(§r)] (B14) ;;33 erfc(gr)} (B26)
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3 2 22 9 3 i i
MS.O) _ 5%4;:; (3 N 2§2r2 84— 4§6r6) o S%erfC(fr) 3. Self Term in Reciprocal Space
(B27) The self term in reciprocal part is evaluated by the inverse
o 1[ & 3a2 - » 66 Fourier transform of the reciprocal part obtained in thespre
M= 5| F 1o (15+ 10¢%r% + 4g%r® + 32¢°r ous section.
T ., Because the submatricé® andg®@ are odd functions ok
-30¢8r8 + 4§10r1°) et as shown in Egs. (B34) and (B36), they go to zero. Although
9a2 h@ is an even function of as in Eq. (B37), the angle integral
—Ferfc(‘fr)] , (B28) gives
A S N A
fdk (filjklkk + Eilkklkj) =3 (6i|j5|k + €i|k5|j) =0, (B39)
©) _ ¢ 2.2 2,2\ o-E2r2
Mg” = T?’f & (-2+£%2) e (B29) 5o that it also vanishes. Therefore, orlff), @, m@ are
left.
Mg) =5 2 3aw2 (3 + 28217 1+ 26844 — 266578 + 4§8r8) g€ Toevaluater?, let us split the integral into two parts, radial
2| vz 100 integral fork and solid-angle integral fdt. From Eq. (B33),
9a§ ]
——erfc(r) (B30) 1 o g ERGp
208 @ =0 =_f ol E G T PP
a;’'(r=0) 27 s 7 6 J(K)

del:: (5”‘ —AKRJ) (B40)

2. Reciprocal Space

To calculate the radial integrals, we use the recurrenegioel
Fourier transform of the Oseen-Burgers tensor in the recipg, = 2(2n — 1)¢2G,,_; with the initial conditionGo = & v for

rocal partJ@ is G defined by
309 = [ drebraP0r) = (5, - ki) CT00.  (B3) Go= [ dkienerrec, (B41)
0
wherek = k/|k| and The radial integral for@ is, then,
8 K k2 3a,(, @+ aﬁ 2
JK) = k—f (1 854)6’('0( 46)' (B32) @7 f dk (1 ——K|K'IK
1 3a, a3, +
With this expression and Egs. (54) to (59), the submatrices = g (3 206" ——— 6 2 ] (B42)
are obtained as
3 s The angle integral is
-+ -
A = %‘Y (1 - k2¥] (6 - ki) k2T (0,  (B33) o .
fdk (6”‘ —kikj)=47r(l—§)6ij. (B43)
b = = (<i)ajkdT (K B34
( I)ejkkk I®. (B34) Therefore, Eq. (95) is obtained:
3
c? = Sii — kiki) KA T (K), (B35)
j 1;5 ( i~ ki) 22 = 0) = &g (6 2052‘% +a" )5”. (B44)
o = :’ [1 kz(a“ % ]]( i) (Ko + 63k
For c¢®, from Eq. (B35) we have
—~2kikjl) KT (K), (B36)
1
3 . =0 f dk .7 (k
h = fg (emkik + ejakik k“j(k) (B37) i/(r=0) = 16 (27r)3 T (k)
A A PN dk 5i' - -k- . B45
m@ = 34 [1 kza" 3| (ki + Kk Xf i~ ki) (B45)
N The radial integral is
+hikioy + ko — akikikids ) KA (K). (B38)
3a3 kk6 Q) = 5a3 53
Thus, Eq. (94) has been derived. 16 207 f dk KT (K) = 32 (B46)
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where we use the resgfit

3.3
Ar=0) = 103‘1§ 5. (B47)
T
die kikjkeki = —= (516 + 6wdj +6ud).  (B51
Form@, from Eq. (B38), f ) 15( jOKI + OikOji + Oil Jk) (B51)
3 1 o k
m® _ 3 6
(r=0) = ——f dk [1——(% +aﬁ)]kj(k)
16 (21 Jo 10 Therefore,
de’; (RjAkq(sik+Rij(5i|
+hikioj + kikeoy — KRRkAkI) (B48) s
The radial i [ (2)(7’ 0) = ¢ 6-— 1895 ( +3 )]
ial integral is Vi 25

3 1 [ K
E(&)Sfo dk [1—1—0(@, +3; )] KT (k)
33 1 126
= 1ag 75|20 - =& (a7 +aﬁ)] (B49)

2
{ 6J| Oik + 6]k6|I 36ij6kl} . (852)

The corresponding scalar functions are

The angle integral gives

N -

10.

11.

12.

13.

14.

15.

dk kkléik"'Rij(sil +|2i&|5jk+kkk5jl - kkkkm

2
- §5ij5kl}a (B50)

= gﬁ {(5j|5ik + 5jk5i|)

378 ,
"‘(2) 2) _
X =77 =~ [12- e (@

aﬁ

-5 )}
(B53)
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