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Resistance functions for two spherical particles with Navier's slip boynoindition in general linear flows,
including rigid translation, rigid rotation, and strain, at low Reynolds nunaverderived by the method of
reflections as well as twin multipole expansions. In the solutions, particiiearad! slip lengths can be chosen
independently. In the course of calculations, single-sphere problensligtboundary condition is solved by
Lamb’s general solution and the expression of multipole expansiodsFaxen’s laws of force, torque, and
stresslet for slip particle are also derived. The solutions of two-bodplem are confirmed to recover the
existing results for the no-slip limit and the case of equal scaled slip lengths.
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I. INTRODUCTION thors extended the Stokesian dynamics method (without lu-
brication) for slip particles using multipole expansionsa
) ) ] o o Faxén’s laws and obtained the slip dependencies for the drag
According to increasing scientific interests in micro- andcoefficient and ective viscosity> With no-slip boundary
nanofluidics and nanotechnology in recent years, fluid megondition, the problem of two spherical particles is soltgd
chanics is applied to s_uch small-scale systems, in additioneffrey and OnisH? and J&rey* for arbitrary size ratio of
to molecular-level theories, where the characteristic®&s  the particles in arbitrary linear flows. The extension tostie
number is generally small enough to take the Stokes approsarticles was done by Ying and Petérfor the gas-solid sys-
imation governed by linear partial féérential equations. In  tem and by Keh and Ché&hfor the liquid-solid system, but
fluid mechanics, historically, both no-slip and slip bounyda they |ack the strain flows. Keh and CHérmpplied Navier’s
conditions were proposed in nineteenth centushen the  gjip houndary condition under a condition that the ratiothef
proper boundary conditions were discussed in the first placesnp length and radius for two particles are equal.
Navier gave the slip boundary condition where the slip veloc- | this paper, we will show the exact solution of two spheres
ity is proportional to the tangential component of the st&fa i the form of resistance functions with arbitrary size aati
force density. For gas flows, Maxwglhad shown that the nder Navier's slip boundary condition with arbitrary slip
surface slip is related to the non-continuous naiure of #% g |engths in general linear flows including strain and shear
and the slip length is proportional to the mean-free path. Foqqys. The present formulation is based on the no-slip case
liquids, on the other hand, from experiments at that age, thg Jefrey and OnisH? and Jérey, ' but we will show all the
no-slip boundary condition was accepted and since then h cessary equations in order that the present paper be self-
been treated as a fundamental law. However, by recent extegniained. We refer equations in the references as Eq. YJO-1

sive studies on the surface slip in micro and nano scales, tl]%r Jetfrey and Onish#3 Eq. (3-1) for Jérey and Eq. (KC-
physics of the liquid-solid slip is recognized to be much enor 1) for Keh and Cheﬁ‘?, ’

complicated than that for gases. Actually apparent viotei
of the no-slip boundary condition at the liquid-solid irftare
in nano scale have been reported®

The paper is organized as follows. In Sec Il, the definition
of resistance functions and Lamb’s general solution are-sum
marized. In Sec lll, the solution of single sphere with slip

Although the importance of the surface slip is realized; the boundary condition is shown. In Sec IV, two-body problem is
oretical studies and analytical solutions for the slip tany ~ solved first by method of reflections and then by twin multi-
condition are very limited compared with those for the rip-s| pole expansions. Concluding remarks are given in Sec V.
boundary condition. Basset solved the flow of single sphere
with slip surface, Felderhof derived Fan’'s law and solu-
tions expressed by multipole expansions for single sphere Il. FORMULAE OF STOKES FLOWS
and two sphere% Bltawzdziewiczet al. showed the interac-
tion between the slip spheres and lubrication functionstfer
axisymmetric motiort® and Luo and Pozrikidis studied two
slip spheres under the shear fisWRecently, the present au-

A. Resistance Functions

At low Reynolds number, the incompressible viscous fluid
is governed by the Stokes equation
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with the incompressibility condition [in (JO-16a,b,c) and (J-4a,b,c)] as
V.ou=0, @) Al = Xiee + Yo (6 - ae). (62)
’B\ﬁﬁ = Yﬁfijkex, (6b)
wherep is the pressurey is the velocity, angt is the shear é\ﬁﬁ = XSae + Y5, (5” - aej), (6¢)
viscosity of the fluid, Let us consider spherical particlesi _ 1
linear flowu®™ given by Gﬁﬁ = xfﬁ (aej - §5ij) &
uS(@) = U+ Q° x 2+ E™ - @) +Yi5 (901 + 0k ~ 208j6). (6d)
q,‘]{f = Y(';}; (ijma + ejfikla), (6e)
where the three constantg®, Q*, and E* are the rigid |\’/]f¥£l = E’XM (aeJ i )(a(a - %)
translational velocity, rigid rotational velocity, andteaof . 2 3 3
strain of the imposed flow, respectively. According to thme li YM

+-2 (a6j|a< + €j0iI& + §0 k8 + €j0ik

earity of the Stokes equation, dynamics of the particlesiis-c >

pletely characterized by the resistance equation (or,vaqui

lently, the mobility equation, that is, the inverse of theise —4331@3)
tance equation). For two-body problem, the equation isrgive Zl\g
[in (J-2)] by +7 (5ik5jl + djkdil — bijoki
+€ €0k + 0ij&8E + 6 €EjEq
FO A1 A2 Ell 512 911 912 U® — u>(x1) —€0ji& — €j0iI& — §OkE — ejéika) , (6f)
F@ Az Az Bai Bz Goi Gpo || UP —u(x2)
(1) O.ona (1) _ O
T Bir Biz Ci1 Ci2 Hun Hiz | Q2 2 ,wheree = r/|r|. The scalar functions such a@j and YAﬁ

= l'l ()
?g B21 B2z C21 Co2 Hai Hz gg:%w are called the resistance functions. We have 11 functions fo
<@ G11 Gi2 Hi1 Hiz M1x My 5O _ g each pairg. From the symmetry on the exchange of particle
G21 Ga2 Ha1 Haz Ma1 My - indicese andg, we have the relations [in (JO-19a) — (JO-19e)
(4)  and (J-5a) — (J-5f)] as
where F©@, T@ andS© are the force, torque, and stresslet
of the particlen, andU@, 2, and E® are the translational

A _ A -1
and angular velocities and strain of the partieJeespectively. Xp(S ) = Xz-aya-p(S47); (72)
In the equation, the grand resistance matrix is decomposed Yé‘ﬁ(s A) = \((/*3_0)(3'_@(55 ah, (7b)
into 6x 6 submatrices. Because of the symmetry of the grand YB(s 1) = —YE (s 1Y) (70)
resistance matrix, the matrices with tilde are obtalnemfrlme S = YEaepS ’
counterparts aBus = B}, Gup = G}, andHas = H},, (where X5p(8 ) = XGoyap(SA™H, (7d)
+ denotes the transpose) and, therefore, we need to calculate YC(s 1) = YS 1t 7e
at least, the rest. Following fleey et al,*31* we scale these ap(S ) G- A7), (7€)
submatrices [in (JO-1.7a,b,c) and (J-3a,b,c)] as Xfﬂ(s/l) = —Xg_a)(s_ﬁ)(s/l‘l), (7f)
Y8 ) = =G e p(S A7), (79)
Awp = 3m(aq + as) Acg. (5a) YD) = Y gepss A, (7h)
— M -1 :
Bg = (8 +3) Bup. (5b) Xp(S D) = Xaayap(S47): (7i)
yM M -1 .
A) =Y, A7), 7
Cop = (aa " aﬁ) " (50) (S> ) (’a—(x)(?,—ﬁ)(sv _1) )
Gos = n(a, +35) G (5d) Za(s D) = Zoaen(S 1) 7
o — af3s
H(Jzﬁ — ( ) ops (se) where
or M 2r a
a +ay a

wherea, is the radius of particler, and the matrices with andr = |r|. Therefore, once we have obtained 22 resistance
hat are dimensionless. From the fact that the geometry of thieinctions for the particles 11 and 12, we can construct the
problem is completely characterized by the single veeter  grand resistance matrix completely. We will see the caicula
xp — x4, these submatrices can be given by scalar functionsions in Sec IV.



B. Lamb’s General Solution force density, as

In this paper, we utilize Lamb’s general soluttéf® to
solve the problem. Lamb’s general solution in the exterior ] ] . . .

u(r)=U+ﬂ><r+E~r+%;(I—nn)-(0'~n), (14)

by normal (equal tar/r for sphere), andr is the stress tensor
defined by
per) = > P, ©) o = —pI +u[Vu+(Vu)']. (15)
n=0
Rewriting Eq. (14) by using the disturbance fielcand im-
o0 posed flowu™, we have
v(r) =ur)-u> = {V X (ry-n-1) + VO_,_1}
; " " v-Lt=wt+ Zt‘x’, (16)
1< n-2 p. : .
= _ - 2 -n-1
+# nz:; { N - 1)r v u where
N+l P wh = AU + A2 x 7 +AE -7, 17)
+——r—, (10)
n2n-1) u andAU =U -U>,AQ = Q-Q%,andAE = E- E>. The

disturbance pamt and imposed patt® of the tangential force

whereu™ is the imposed velocity and is the disturbance density are defined by

velocity field. The solid spherical harmonigs,_1, ®_p_1,

andy_n_1 are expressed [in (JO-2.3)] by t = (I-nn) (' n), (18a)
1 W Lgay t° = (I-nn) (™ n), (18b)
LI Z Pmnz (_) Ymn(6 ¢), (11a)
u ~alr where
n r
a n+1 v o _ T f 1
o = Y am(3) Yoo, (11b) o' = —pI+u[Vo+ (Vo) |, (19a)
m=0 o = u[Vu© +(Vu®)]. (19b)
n n+l
D1 = vana(é) Ymn(6, ¢), (11c) From the imposed flow in Eq. (3)° becomes
m=0 r 2#
whereYp, is the spherical harmonics defined by t*=—(I-nn) E-r. (20)
Ymn(6, ¢) = an(cosg)eimﬁ, (12)  Note that, on the slip boundary condition (16), the leftdhan

. ) ] side is the disturbance quantities and the right-hand sithei
with the associated Legendre functiBf!, and pmn, dmn: @nd  jmposed quantities. Also note that, on the imposed part, the
Vimn are the cofficients to be determined from the boundary slip contribution appears only on the flowBf® # 0 as shown
conditions. in Eq. (20).

In terms of Lamb’s general solution for the disturbance field

Il SINGLE SPHERE si\i/gnEt?Wv(llBO)’ the corresponding surface force dengitis

First, let us consider a single sphere with raduat the fi=0"n

origin. On the particle surfacde| = a, the conventional no- u
slip boundary condition is given by =7 Z ~(N+2)V x (rx-n-1)
n
u(r)=U+Qxr+E-r, (13) -2+ 2)VD_ 3 (21)
— 2
whereU and(? are the translational and rotational velocities +}wr2v 1 — }Mrp_n_l},
of the particle, respectively. Here, we also introduce thairs u n@2n-1) pn@2n-1)

tensorE of the particle surface, so that the boundary condi-3n4¢ defined in Eq. (18a) is expressed by
tion (13) is applicable to the deformable particle at instaof

spherical shape. For rigid spherical partide= 0.
P pe. Forrigid spherical t= e 2V x e
n

A. Navier's Boundary Condition -2(n+ 2)(V — fc’)r)(b,n,l
r

Navie? proposed the slip boundary condition, where the 1+ Hn-1) 5 (V _ far) p—n—1}~ (22)
r

slip velocity on the surface is proportional to the tanganti pu n2n-1)



1. Three Scalar Functions

4

b. Tangential Surface ForceNext, let us considert
which is necessary for the slip boundary condition in Eq).(16

In order to achieve the boundary condition for Lamb’s gen-Its surface vector is defined by

eral solutions, Jérey and OnisH# used three scalar functions
as in Happel and Brennét,§3.2. Consider a general vector

field g and its surface vectoiG defined by

G@.0):=g| . (23)
so that
0G
— =0. 24
or 0 (24)
We define the following three scalar functions
r
Grag = - el (25a)
Gygv = -rV -G, (25b)
Got = r-VXG. (25¢)

Obviously, the first scalaB,q is the radial componer, =
(r/r)- G itself. The other twoGg, andG,q, are related to the
tangential components €., Gy andG, in polar coordinates),
except for the factor2G, on the divergence, as

0 cosf 1 Gy
Giv = 26, - [=+ — -——, (26
dv ' (80 " sm@) “" sing ¢ (262)
1 0Gy Jd cosf
Grag = ——— 0+ | =+ —|Gy], 26b
rad [ sing ¢ +(69 i sme) "’] (26b)

where.# is +1 in the right-handed coordinates antl in the
left-handed coordinates. It should be noted that the dararg
of the surface vectof is related to the 3D vector fielglas

Ggv=-rV-g

Irl=a

0
— 27
o Olpa 27)

where the substitution df| = a is applied after the deriva-
tives.

a. Velocity Field As a first example, consider the distur-

bance velocity, whose surface vector is defined Byas
V(6,8) := v|m:a. (28)
By definition, the first scalav,,q is given bywv as
Viadi= = V=20 . (29a)
r r [r|=a
Because satisfiesV - v = 0, Vg is given by
0
Vigiv :=—rvV-V =r—v; , (29b)
or lirl=a

from Eq. (27).Viaq is independent of its radial componént
as shown in Eq. (26b), so that it is simply written byas
Vrot:zr-Vszr-VX'v‘l a (29¢)

From Lamb’s general solution fay in Eq. (10), then, the
three scalars are obtained as iffidy and Onisht3

T, ¢) =t e’ (30)
The radial component dfis zero by definition as
Trad = :3 T =0. (31a)
From Eq. (27), therefore, we have
Tay = IV -T =~V - t|w=a. (31b)

Because the rotation has no radial component for an arpitrar
vector field, we can use the bare surface fofder the bound-
ary condition for the tangential fordeas

Toti=7-VXT =1V x t'wza =7 VX f'w:a. (31c)

Using Lamb’s general solution in Eq. (22), the three scalar
components fot are given by

?ti = 0, (32a)
AVt = Z [Zn(n + r12)(n + 2)(:[)_n_1
(n+1P(n—1) p-na
e ] , (32b)
r-Vxt = (32¢c)

_/Fl Zn:(n +2)n(n+ L)y n1.

c. Disturbance Part Three scalars foV are obtained
by Egs. (29a), (29b), and (29c), and the slip contribution
—(y/uw)T by Egs. (32a), (32b), and (32c). Substituting Lamb’s
solution (10) with the expansions in Eqgs. (11a), (11b), and
(11c) and putting = a, the three scalars of the disturbance
part, i.e., the left-hand side, of the slip boundary condition
(16) are given by

V—ZT) VYL 1)Vmn
( M rad nzg);o[ (n+ )V
n+1
+2(21——1) pmn] Ymn(6 ¢), (33a)
V—ZT):wn 1)(n + 2) (1 + 2117) Vi
( i nzzogo(m )(n+2)(1+ 2
n(n+1) 1 2n+1)(n-1)_
_2(21—1)( n 7) p”‘”]
Ymn(g’ ¢)s (33b)
')/ 00 n
V-=T = D@1 2 mnYmn(0, @),
v-2r) D330+ )1+ 0+ 259 G
(33¢)
where the scaled slip lenghis defined by
~._7
v = 3 (34)
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d. Imposed Part Let us look at the three components for From Egs. (41a), (41b), and (41c), the ftméentSymn, Ymn
the vectorw” in Eq. (17). Note that the divergence is zero asand wnm, are given by the parametersl/, AQ2, AE, and
shown by E*. Therefore, by the boundary condition (16) at the surface
|r| = awith the scalars of the disturbance fields in Egs. (33a),
W = 6 AQjSik + AEij6ij = 0, (35)  (33b), and (33c), the caiEcients Emn, Gmn, Vi) are given by

becauseéE,, = 0. Therefore, we need to calculate the diver—the boundary conditionun, ¥/mn, wmn) as

gence component through the derivative of the radial valoci _2n-1
(as forv). The three components fas® are then given by Pmn =~ 777 Tozn+1t/mn
. . rir: (n+2)(21—l)
%\/\/IA = %Aui + %AE”, (36a) +Tr2n,2n+1)(mny (43a)
ARV L Vi = =T
rjaj? o= TAE”-, (36b) mn = 2 +1) 0.2n+1¥mn
n
rieil‘kal‘wﬁ = 2riAQi' (36C) +2(n—+1)r2(n+1)(n—1)/n,2n+l)(mn, (43b)
We use the identityjcejq = 20 for the last equation. For 1
t=, the three components are given as in the following. The Omn = mro,nﬂwmn’ (43c)
normal component is zero by definition as
; where
i
-t =0. (37) 1+ny
r mn = T (44)

T 1ty

r renr Note that in the no-slip){ = 0) and perfect-slip{ = )
riEijkathO = Zyriqjkaj <6lem - r_Bm) Elor(;1 =0. (38) limits, I'm, reduces to

The rotation is also vanished as

Because the normal component is zero (astjothe diver- _J fory =0, (45)
gence component is obtained through the divergence as ma m/n  fory = co.
. Mk ririrg o Mk oo
—raitk = —2ur o (6”‘ ? - |r_13) k= 6/1'{—2 jke (39)
B. Single Body Solutions
where we usé&,; = 0.

Define the surface vector of the right-hand side of the S|Ip In the fo||owing, we solve Sing|e-body prob|em with the

boundary condition (16) by slip boundary condition through Egs. (43a), (43b), and (43c
W= ('wA + Zt‘”) (40) _
H [rj=a 1. Translating Sphere
The three scalars fd” are then given by Consider the translating sphere with the velodify =
Wiag = 6AU; + egjaAE;, (41a)  (0,0,U), which is given by
Wav = eejaAE; + 6yeejak], (41b) Xmn = Udomé1n. (46)
Woor = 26:2A%, (41c) Substituting the condition (46) into the recurrence reladi
wheree = r/r. (43a), (43b), and (43c), we have the solution
3
Pmn = EUr2,35mo(5n1, (47a)
2. Recurrence Relations 1
Vin = ZUFO,SémO(Snl, (47b)
Let us introduce the spherical harmonics expansion for the _
Omn = 0. (47¢)

three components of the imposed part by
The force acting on the particle is given by the fméent of

[ n . .
Wrad = Z Z)(mnYmn(e, ®), (42a) Lamb’s general solution [in (JO-2.10)] as
om0 F = 4npalpoiz - pu (2 +1i9)], (48)
Wy = Z Z YmnYmn(6, ), (42b)  wherex, g, andz are the unit vectors ir, y, andz directions,
n=0 m=0 respectively. Therefore, the force on the sphere trangati
o N with the velocityU in z direction is
Wit = > > wmnYr(6: ¢)- (420)

F = 67r/1a1"2,3U z. (49)

>
il
o
i
o



This is identical to the result by Basse(See also Lamb/
Art. 337, 3 and Felderhof) Substituting the cd@cients

(47a), (47b), and (47c) into Lamb’s general solution in Eq.

(10) and rewriting the parameterby the strength of the force
F through Eqg. (49), the disturbance field is given by

1 a_,
V= 1+I“0,2—V J - F, (50)
8nu 6
whereJ is the Oseen-Burgers tensor given by
1 rir;
Jij(r) = F (5” + %) (51)

2. Rotating Sphere

For theQ problem,Wq in Eq. (41c) is the only non-zero

component. Consider the sphere with the angular velocity

Q = (0,0, Q), which reduces to

Substituting the condition (46) into the recurrence reladi
(43a), (43b), and (43c), we have the solution

pmn = O, (53&)
Von = 0, (53b)
Omn = anHO,35mO(5n1- (530)

The torque acting on the particle is given by theffioent of
Lamb’s general solution [in (JO-2.11)] as

T= 87r,ua2 [Qo1Z — qu1 (& +i9)]. (54)

Therefore, the torque on the sphere rotating with the amgula

velocity Q in z direction is
T = 8rua®3Q3. (55)

This is consistent with the result by Felderhaind Padma-
vathi et all® Note that the torqud” would vanish for the
sphere with the perfect-slip surface (fore= ). Substituting

the codficients (53a), (53b), and (53c) into Lamb’s general

Let us consider the strain given by

-~ . 1
This is achieved by
2
Xmn = éaE60m62n’ (608)
2

Substituting the boundary conditions (60a) and (60b) iheo t
recurrence relations (43a), (43b), and (43c), we have tle so
tion

10
Pmn = §352,55m5n2, (61a)
1
Vmn = éaErO,SémO(an» (Glb)
G = O. (61c)

The stresslet acting on the particle is given by theflbcient
of Lamb’s general solution [in (J-6)] as

S = Zﬂuaz{poz(ﬁﬁ - %I)
—pr2[ZZ+ 22 +i(gZ + 29)]
+2p2 (2T - gy + 1 (Y + yx)]}. (62)

Therefore, the stresslet on the sphere in the shear flow with
the parameteE is

20
S = —7r,ua31"2,5E.

3 (63)

This is identical to the result by FelderHbNote that this has
the following two extremes

_ |2nua®E  fory = 0 (no-slip)

= 64
{gnua3E fory = oo (perfect-slip) (©4)

solution in Eqg. (10) and using Eg. (55), the disturbance field

is given by

1
v=—=R-T,

= (56)

where

Ry(r) = e (57)

3. Sphere in Shear Flow

For the E problem, we have two non-zero components.

Here we assume the rigid sphere, so that= 0 and from
Egs. (41a), (41b), and (41c),

Wad = —e€aE], (58a)
Wav = —ee€akE; (1-6y), (58b)
Wrot = 0. (580)

These yield to theféective viscosity* up toO(¢) in the two
limits as

7

* § _ali .
M {1 + 3¢ for no-slip particles (65)

1+ ¢  for perfect-slip particles

where¢ is the volume fraction. From Batchel8tthe dfec-
tive viscosity for the dispersions of fluid droplets is givan

) 5—
* +_
Ho_q B2
7 [+

(66)

wherep is the viscosity of the fluid surrounding the droplets
andyu is the viscosity of the fluid inside the droplets. This
gives the same extremes as

U

* § —: .. .
H {1+ 3¢ for u = oo (rigid particles) 67)

“l1+¢ forji=0 (bubbles)



as expected. Substituting the €dgents (61a), (61b), and Xfﬁ [in (J-18a,b)] by
(61c) into Lamb’s general solution in Eg. (10) and using Eq.
(63), the disturbance field is given by

1 a2v2 Xf(s ) =
’1)2—% (1+F0’2E)K : S, (68)
where Xp(s4) =
K _ filjrg
ik(r)=-3 5 (69)

Y&, [in (J-26a,b)] by

IV. TWO-BODY PROBLEM

Y]_Gl(s /l) =

Now, we study two-body problem. We will determine 22
resistance functions mentioned in Sec. Il A. Followinffréy YS(s 1) =
12 -

et al,131%we write these functions in terms of the ¢deents
fn and determine the cfiients. Here we summarize the
definitions of the coﬁcients:x(ﬁﬁ are given [in (JO-3.13) and

(JO-3.14)] by Y!, [in (3-34a,b)] by

> XG
fm

[+ 2)9™

m=1,0dd
4N e
1+ )2

m=2,even

> YG
fm

m=1,0dd [(1 + /l)S]m’

-4 >
1+2)2 Z [(A+21)9™

m=0,even

YG
fm

o0 YH
fm

[(L+ )™

rThO,even
8 (o)
a+1)3

i
[+ D™

m=1,0dd

ad XM
fm

2 [T

m:O,even
8 (o)
a+2)3

XM
fm

[(L+)s™

m=1,0odd

R YM
1:m

2. [+ Hg™

m=0,even
8 (o8]
a+2)3

YM
fm

[+ 9™

m=1,0dd

© ZM
fm

[(A+ )™

m=0,even
-8 o
a+1)3

ZM
fm

[+ 2)9™

m=1,0dd

© fXA
m=0,even
s = 2 3 (70b) H
S 1+ 4 [+ 0™ Yi(s ) =
YA [in (JO-4.13) and (JO-4.14)] b
o I yand( Ny XM fin (3-47a,b)] by
A i frA
Yu(s ) = —0 (71a)
nGeienl (1 D" Xii(s 1) =
s D) = i fn” (71b)
12 = T e,
1+/1nhl’odd[(1+/l)s] Xyz(&ﬂ) _
Y&, [in (JO-5.3) and (JO-5.4)] by
. o fY8 Y2 [in (3-63a,b)] by
Yi(s ) = mzl,owm, (72a)
M
-4 < frB Yi(s ) =
B _ m
YiAs ) = (1+ )2 Z [(L+ )™ (72b)
m=0,even
YM(s 1) =
XS, [in (JO-6.7) and (JO-6.8)] by 12(S 1)
© fXC Vo
Xf(s ) = Z mﬂw (73a)  ZM [in (J-78a,b)] by
m=0,even
Xo(s0) = i fo” (73b) ZM(s ) =
12 - N 11 =
1+2)3 gL+ 9™
YC, [in (JO-7.7) and (JO-7.8)] by s 1) =
Ye I
G(s ) = W;VEHW, (74a)
Yos ) = i - (74b)
- @L+2° [+ g™ the method of reflections.

m=1,0dd

2. [(1+ 1™

(75a)

(75b)

(76a)

(76b)

(77a)

(77b)

(78a)

(78D)

(79a)

(79b)

(80a)

(80b)

Before proceeding to the full calculation of the €@oeents
by twin multipole expansions (shown later in Sec IV B), we
first derive lower cofficients by simpler formulation called



A. Method of Reflections 2. Translating Spheres in Axisymmetric Motion

Let us consider two particlas = 1 and 2, whose centers,  Here we set the relative vector between particle 1 and 2 in
radii, and slip lengths are given hw,, a,, andy,, respec- zdirection as
tively. The scaled slip length for particteis defined by

r=x—x1 = (0,0,r). (89)
T 1= 2 (81) _ _ _
a, For the functionX®, we set the velocity of the particle 1 par-
alleltor as
1. Faxén’s Laws UY = (0,0,u®). (90)

From Faxen’s law for the force in Eq. (85) with the distur-
‘bance field by Eq. (88) with Eq. (90), we have the force on
the particle 2 due to the translating particle 1 as

From Egs. (50), (56), and (68) in the previous section
the disturbance velocity field at positian caused by a sin-
gle spherex atx, with slip lengthy,, is given by

@ _ @13
1 a2 F¥ = 6ruaxl’ U,
v(x) = — (1 + Fg’%—"VZ) J(x - z,)  F© I 2371 3
S "0 B e e
+R(x - x,) - T HA2158 2312377 ~ 5123033
() &V . gl@) S
—|\ 1+ Too—g | K@ - =) - S, (82) =50l 533 |V V0. (91)
where In terms of the scalar functions(’jﬁ, the force is expressed by
1+ nyy,
re .--—_-*¢ 83
mT 14y, (83) F@ = 6rua;Xoy(s HUDs;,
and the force™@, torqueT’®, and stressle$ on the sphere +3nu(az + 21)X5y(s YU D5, (92)
are given by wheresandaA are defined in Eq. (8). Therefore,
(@ - @77
IR G sy = 18 (93a)
(43 «, a ?
T = Sl (840) o (ARG i) s aery
20 . XA(s ) = 3 23 7230 3 2
s@ = Emagrg,gw. (84c) 21 1+ 1+ s (1+ )33
(See Egs. (49), (55), and (63) in the previous section.) Read (93b)

ing Eq. (82) as multipole expansion of the velocity field, from the s

i . : ymmetry oX(’jﬁ in Eq. (7a), we have
Faxén’s laws for slip sphere are derived as

(1) (2) 3 (1)(2)
2 _2 (3ar5;r A1°T520 % + 4l 2
@ _ @ |57 @3 o2\ XA (s 1) = 2323 23 03 03" 23
F = 671'/130/1—‘2’3 [U (1+ FO,Z 6 \% )u ((Ba,):| N (85) ]_2(5’ ) 1-‘1-/1 (1"1‘/1)5 (1+ /1)33’3
1
76— Bnar|al - Jvx @), @) ©Y
20 From the expression okf, by the codicients f* in Eq.
§@ _ gnuaif(z‘fé [E(a) (70b), we have
2@\ 1, B4 = Srargi, (952)
_(1+rg,; 5 )E(Vu +(Vu)T)(:Ba)}, (87) " 23 (1253 PN
f3 = —4/11"0331"23 -4 F2,3r0,3' (95b)

whereu’ is the velocity field in absent of particte For later
use, we rewrite Eq. (82) in the resistance form by replacin

d:or the self parX?,, we have
F@©) 1@ andS©@ py U@, Q@ and E© from Egs. (84a),

11

XA 1
(84b), and (84c) as R34 =T5a (95¢)
3a, a2 These cofficients (and those for the rest of the functions be-
u(z) = Tr(za% (1 + rgfgg“vz) J(x - x,) - U@ low) will be compared with the results by twin multipole ex-
pansions in Sec. IV B.
+a§l“gf§R(sc —x,) QW From Faken’s law for the torque in Eq. (86), we have the
53 a2v?2 torque on the particle 2 due to the translating particle 1 as
-==rf’) (1 +TE) )K(m - x,) : E(88)
62 2710 T@ =0, (96)



becaus&2® = 0 in the present problem alﬁ;iu(kl) is symmet-

ric about the indices, k. This is consistent that there is X&
function.
From Faxen’s law for the stresslet in Eq. (87),

20
s® = 20ar@E®

3 257
B B R
2o rg;rg;] U (s - ). @
In terms of the scalar functiorrsfﬁ, the stresslet is expressed
by
S? = pm(ag+ay)*X5U® (5izajz - %& ,—), (98)
so that
S = o
o). (99

From the symmetry o]f(fﬁ in Eq. (7f), we have

(1) (2) 3r()(2) (112
o -4 [18UHrE eorryrd) + seurfyrd)
27 1+22] 1+2)2< 1+ 2)4s*

(100)
From the expression oX$, by the codicients fX© in Eq.
(75b), we have

e _ g (101a)
5 - 18 oo
¢ = -36r2ry) - 60°TRrY).  (101c)

3. Translating Spheres in Asymmetric Motion

Next, we study the asymmetric motion, that is, the velocity

U® is in y-direction as

the particle 2 due to the translating particle 1 as

3

Fi(z) = 67rua2F(2?;Ui(2)—67rua2( a

@)
l—‘2,31—‘2,3

188 2 a
2 s 22 us,. a0

In terms of the scalar functiong®

A the force is expressed by

F@ = 6ruayYay(s )UPs,

+3nu(ag +a1)Ypy(s YUWsy.  (105)
Therefore,
Yoy(s. ) =TS, (106a)
21 (3 1
Yh(s ) = - S - r@ro
2(s4) 1+/l(2(l+/l)s 2323
2
(2)(1) 2-(2) ~(2)
AT S (CArs) + A ro,grz’s)). (106b)
From the symmetry of’(’jﬁ in Eq. (7b), we have
Yii(s.2) =T8), (107a)
2 (3 2
YA(s. 1) = ——— (22 1@
(s 1+/l(2(1+/l)s 23723
2 3r @), O
e (CTEIG+ rgry)|. (1o7)

From the expression ofy, by the codicients f/* in Eq.
(71b), we have

fogh = 1%, (108a)
3

YA 1)~(2

A = ST, (108b)

YA 12 43 1)(2

A = rIr° + rAraa (108c)

From Fa¥n’s law for the torque in Eg. (86), we have the
torque on the particle 2 due to the translating particle 1 as

2 381 (2) (1)) (L
TP = _eﬂyazr_zrg,;rg,;w ix. (109)
In terms of the scalar functior‘nsfﬁ, the torque is expressed by

TO = 4mpadY3ouU® + mu(a; + 21)* Y5160 U M. (110)

@ = @ oyt
U™ =(0.U™.0). (102) Therefore,
Note that, forr = (0,0,r), we have y282 -0, (111a)
-4 643
YA U(ﬁ) YB _ (2)1*(1)' 111
— @ ‘;ﬁ’ ’(‘ﬁ) 21 (1+ )2 (1+ )2 03 23 (111b)
Ags - UY = | YouUy” |, (103)
x{jﬁugﬁ) From the symmetry o¥®, in Eq. (7c), we have
from Eg. (6a). YE =0, (112a)
From Faxen’s law for the force in Eq. (85) with the distur- VB _ -4 -61 @ 112b
bance field by Eq. (88) with Eqg. (102), we have the force on 127 1+ )2 (1+2)28 03 2% ( )



From the expression ofZ, andYE, by the codicientsf®in
Egs. (72a) and (72b), we have

f® = 0, (113a)
fY8 = 0, (113b)
fyB = —6ariyry). (113c)

From Faxen’s law for the stresslet in Eq. (87), the stresslet

is given by

20 3a3
s = Deita( ity r

® (Z)E%Fm]
4r4 0

0,2 10 2r4 23
XU(]') (5iy6jz + 6jy5iz) . (114)
Note that

S = 4muadGRRUP + mu(ag + a1)’GRUY, (115)

and
Gi(ﬁf)uk = Y(?ﬁ (6i26jy + 6]26iy) U, (116)
fore = (0,0,1) andU = (0, U, 0), we have
Y5 = 0, (117a)
2042 42
YS = r@rw
21 (1+/1)2 (1+/l)454 25" 03
12 2
=~ __1@ri). 117b
"5 [T+ A)id 05 23 (117b)
From the symmetry oYSﬁ in Eq. (7g), we have
YS = 0, (118a)
—4 2023
Vo W)
12 (1+/l)2 (l+/l)434 25 03
120 @
+ a7 841“051"23 . (118b)

From the expression ofy, by the codicients f/© in Eq.
(76b), we have

fOYG — O, (119a)

fZYG — O’ (119b)

£¢ = 200 + 12ar3re). (119¢)
4, Q Problem

Consider the influence of the particle 1 rotating with the

angular velocityQ®. In the two-body problem with- =

(0,0,r), we set the angular veloci® for the axisymmetric

case by

o® = aWs,, (120a)
and for the asymmetric case by

o) = aWs;,. (120b)

10

a. Torque in Axisymmetric MotionFrom Faen’s law
for the torque in Eq. (86) with the disturbance field by Eq.
(88) with Eq. (120a), we have the torque on the particle 2 due
to the translating particle 1 as

3
T = 8ruafr Qo - amadr® irils,o0.  (121)

In terms of the scalar function%C

e the torque is expressed

by
T@ = 8ruadX5,0@s;, + mu(ay + a1)*°X5,0W5,,.(122)
Therefore,
% = 18, 232)
c__ 80 8 tomm (153

X5 = - .
2 (1+2)3 (1+2)3s3 03703

From the symmetry olf(gﬁ in Eq. (7d), we have

3
8 8T Lwr@

Xel) = @ s e s 0308

(124)

From the expression oXS, by the codicients fX© in Eq.
(73b), we have

¢ = 14h, (125a)
¢ =0, (125b)
¢ = 82°r§ry). (125c)

b. Torque in Asymmetric MotionFor the asymmetric
motion, from Fakn’s law for the torque in Eqg. (86) with the
disturbance field by Eq. (88) with Eq. (120b), we have the
torque on the particle 2 due to the translating particle 1 as

3
T = 8ruaSr20® + 4nuadr@re) A5,00,

o3 (126)

In terms of the scalar functionﬁg, the torque is expressed by

TO = gmuadYs,0@sy + nu(ay + a1)*¥5,0Ws,. (127)

Therefore,
2
Y5, = I, (128a)
423 8
= art) — ———. 128b
2L 7 (1+2)3 93 03(1+ )38 (128D)
From the symmetry oYfﬁ in Eq. (7e), we have
823
YS,0) = r&re) (129)

(1+2)3 03 03(14 )33

From the expression of, by the codicients f/© in Eq.
(74b), we have
¢ = o,

0° - avrie,

(130a)
(130b)
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c. Stresslet Becaus@jui(l) for the axisymmetric motion a. Function ¥ Substituting the disturbance field in Eq.
is anti-symmetric foii and j, there is no contribution for the (88) with E in Eq. (138a) into the second term in Eq. (137),
stresslet. For the asymmetric motion, from Ea’s law for  we have
the stresslet in Eq. (87) with the disturbance field by Eq),(88

20 5[5 o) )
5 3 ua, [r_arz,5r2,5

S = 10muad 2TAT (620 + dude) Q. (131)
i 2,325 03\"1IZV )X xYjz 6 5(2) 1~(1) 2_3(2)1~(1)
r e (aST53T 03 + a3aiT 5ol y)
The stresslet is given by Sii
X (6i26jz - —J) EX. (139)
342 M) 3
mu(az + a;) Hijk Q7 (132)
In terms of the scalar functioNQ"l, it is written by
and S 3yM Jij | =x
—nu(ag + a1) X21 0iz0jz — = E”. (140)
@M — vH (5.5 1 5.5 ) oD 6 3
HEDQ = Y| (6120 + 67200) Y, (133)
Therefore,
for r = (0,0,r) andQY = QWé,,. Therefore, " 23 40 o
X1 = 8 I35
10 8 21 (1+/l)3 (1+ﬂ)3§3 25" 25
YH = @rw (134) 192
217 (14 )3 (L + )33 25 03 T E (rors + azrggrg;)] . (141)
From the symmetry off}, in Eq. (7h), we have From the symmetry ok™ in Eq. (7i), we have
10 813 M 8 408 @)
H _ (1)) X5 = I3.r
Y12 = RE (1+/l)333r2,5ro,3' (135) 127 1+ 23 |[(L+2)3s3 2525
192 5 1)@ . 1300
From the expression of;, by the codicients f,'" in Eq. T (1+ A5 (’l IZslos+ 4 1"0,51"2,5) - (142)

(77b), we have
From the expression ok}, by the codicients f*™ in Eq.

fYH = 0, (136a) (78b), we have
7 = 102°r50r$). (136b) ffM = 0, (143a)
M = 40°T5re), (143b)
XM = —192(25Tr 4+ 3 rir@)). (143c
5. E Problem 5 ( 25 05 05 2,5) ( )
b. Function Y Substituting the disturbance field in Eq.
From Faen’s law for the stresslet in Eq. (87), (88) with Eyf in Eq. (138b) into the second term in Eq. (137),
we have
20 3
@ _ 20 3r@[g@ 20 5a
= Snuardd [ Smas| -5 AT
(1 F(Z)_a§v2) ! iU + a;u®] ( )} (137) 4
— + —|o:uy’ + 0;u Tr2)|. 2)(1 2) (1
T FL I 2y ) + e
We will see the second term which relates to the resistance X (6ix5 iz + 5iz51x) E". (144)
functionsXM, YM, andZ}.. Let us define three types of strain _ o
by In terms of the scalar functiowi}}, it is written by
5
£ = EX (ot - %) (1383) 671 + a0Vl (Budie + 80 BT (149)
3 b
Bl = EY (S + i), (138p) ~ Therefore,
Ef = E* (0 — Okydly)» (138c) w_og X [ 2 o0
21 (1+A)3| (L+2)3s3 25 25
which correspond to the scalar functioxy,, Y™, andzM 128 @) | 1202 )
R B aof? ap? -
respectively. s s (rarss + 2rrd)|. (146



From the symmetry of,} in Eq. (7j), we have

8 2043
Y = - rOre)
127 (1+2)3| (1+2)3s8 25 25
128 (srr@ y err@)| (147
+(1+/l)5s'5( 5aT0s + TI50) |- (147)

From the expression of}4 by the codicients '™ in Eq.
(79b), we have

f'M =0, (148a)

M = —200°r4re), (148b)

fyM = 128(°TRrE + A°r§rY).  (148c)
c. Function 2! Substituting the disturbance field in Eq.

(88) with Efl in Eg. (138c) into the second term in Eq. (137),
we have

20 51 2) (1 2
—gﬂﬂagr—s (83TG? + aagT SArSY) (dixdjx — Siyoyy) EZ.
(149)
In terms of the scalar functiad!, it is written by
5
671’/1(8.2 + a1)3Z,L’,"'1 (5ix5jx - 5iy5jy) EZ. (150)
Therefore,
A8 32
M _ @) 4 12r@1rQ)
= R A S (To2rsl + 2rarsl). (151)
From the symmetry ozl';"ﬁ in Eq. (7k), we have
-8 32
M _ S5 @) 4 3@
2= AT A S (P82l + °rred). (152)

From the expression df}} by the codicients fZ™ in Eq.
(80b), we have

fZM = 0, (153a)

M = 0, (153b)
1)~(2 1)(2

fEM = 32(A°TSUrR + A°r4Ars)).  (153c)

B. Twin Multipole Expansions

First, we outline the derivation of equations amongftiee
cients Emn, Amn, Vmn) and ¢mn, xmn, wmn) for the slip spheres.

1. Outline

In Sec.

boundary condition in Eq. (16). ffeey et al34solved two-
sphere problem with no-slip boundary conditidre., (16)
with v = 0. To complete the boundary condition for two slip

lll, the problem of single slip sphere has been
solved by Lamb’s general solution in Eg. (10) through three
scalars of the surface vector on the both sides of the slip

12

spheres, we need to obtain the tangential force densityedaus
by particle (3—- @) on the surface of particle. Let us denote
it by ¢ as

t/(a) — (I _ n(a)n(a)) . (0(3—0) . n(a)) ,
wheren(@ is the surface normal of particle (@ /r, for

sphere) an& -9 is the disturbance part of the stress caused
by particle (3— @) given by

(154)

o®) = a4y [V'v(a’”) ¥ (V'u(3"’))T] . (155)
Here, pC- and v are expressed by Lamb’s solution in
Egs. (9) and (10), respectively. Becaugég® - n(® # fG-a),
we cannot use the expression in Eq. (21).

Following similar calculations by Jey and OnisH# for
the disturbance velocity caused by (3- @) particle ona
particle, 4% can be expressed by the spherical harmonics
with respect to the particle by the transformation [in (JO-

2.1)]
n+1 s
Ay (% n+l N+s\(rza)®
(C) Yon (60:9) = () ;( o m)( =) Vins (60 ).
(156)
and the following relations [in (JO-2.7)]
To = 3.4 (Fr3.q — T COSO3 o) + O3 ,r sinds,  (157a)
r2=r3  +r2-2r3 ,r costs,. (157b)

After substituting the expansions for the solid sphericat h
monics p© %, ®* 9, andy® % in Egs. (11a), (11b), and
(11c), the three scalars of the surface vectot’8? are ob-
tained by the summations fof,(6,, ¢). Combining the re-
sults fort’@ with those for the single sphere in Egs. (43a),
(43b), and (43c) and the corresponding resultafgiven by
Jefrey and Onisht? we have three equations for the @be
cients, corresponding to Egs. (JO-2.9a), (JO-2.9b), add (J
2.9c¢) for the no-slip case, as

Y@ —(n-1)(1-2(n+ 1)7.)x)
= (n+ D@+ D)L+ v -

> Pl
+i(

n
2n+3

n-1
(04

(1-(2n + 1)y,) pC2t2,

(158a)

S
3-a

n+s
n+m

m
s=m
Yioh+ (n+2) (L+ 2ry,) x5,
L en 1T ke )
S=m

2n—-1
x [i(=1)'m(2n + 1) (1 + 27) o5 ta o

+n(2n+ 1) (1+ 27,) Vs,
2n+1
n_1 1+ 2y)
o ngn+ s—2ns—2) — m?(2ns— 4s—4n + 2)
29(2s—1)(n+ 9)

n+s
n+m

)tz-ltéa

+

Pl

e, (158b)

+§ Prs
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W@ = nin+1)(1+ (n+2)y,) 2 The recurrence relations are
[ N+ .ns . © n+s
+Z(n+m)t“t3—“(l_(n_lﬁ“) = Z(n+m)
S=m S=m
—nsd3-® (1M pE-a) . n+1)2n-1
[ nsdisens + -2y S| (15ee) x| -i-aymE XDt g
n2n+1)(2n-1
where _n@n+hn-1) - :( T )Fgf;n+lv(rﬁ;“)t2’1t3fﬁ 2
2n+1ngn+s-2ns—2) - m?(2ns—4s—4n + 2)
. S _
= (159) n+1 25(2s-1)(n+9)
Xr(ngl pggw) tg_ltg—a
Here, we extend (JO-2.9a) and (JO-2.9b) for the slip padicl N2n-1) ) @ a)nics
keeping the properties that all terms except g in the “2(n+1) oamiPms L E (161a)
summation are vanished in Eq. (158a) aﬁ@ is eliminated
in Eq. (158b).
9. (1580) 2(2n+ V3, = TP (161b)

Note that Keh and Chéf take a dfferent form for the
first equation, that is//f{q’%— ((n - 1)+ (2n* + 1)’)7(1))(&1’,)1 in EqQ.
(KC-20a). Although they are mathematically equivalent, Eq
(158a) is simpler and we will use it later in this paper. Also
note that there are typos in Keh and CHeat Eqgs. (KC-

()

20a,b,c) wheres 2 _y in the present notation) should _ N[ n+s
) Bz V-0 p ) @ = Z(n+m

be replaced bﬁ;l. If we look at the slip boundary condition s=m
from which these three equations are derived, it is obvibat t o
only the slip length of particle would appear there. It should -i(-1)
be noted that the results such as fGo@nts fx in Keh and
Cheri® are correct, because they took a simplification that thdt should be noted that the initial conditions are independe

scaled slip lengths for two particles are the Samﬁas’i,‘z in of m, while the recurrence relations are not. Therefore, the
the present notation. initial conditions are the same fot (m = 0), Y (m = 1), and

Z (m = 2) functions for each problems (translating, rotating,
or in the shear).

Note that the recurrence relations havelependent quan-
tity T, so that we need to solve the ¢deientsPnpg, Vipgs
andQnpq for a as well as 3- «, while, for the no-slip case, the
codficients fora and 3— « are identical.

The results shown in the following are obtained by the
program implemented on an open source computer algebra
system called “Maxima”Kttp://maxima.sourceforge.
net/), so that the results are exact. The program is relatively
slow due to its symbolic calculation and the ffagents are
obtained up tk = 20, at least. We also implement a code in
C with floating-point variables where the parametgrsand
v, Must be given by numbers for the calculation. With this
code, we can obtain the ddieients aroundk = 100.

2n (@)

n+s
(3—a)¢n+14s
n+m ) (n+1)(2n+ 3)F*<2“+1>’2 Pms Lt

3-a’

&

S
() a3 1
m l—‘—c‘(n— 1).n+ 2q§n s Q)tgtg‘: o

m
1@ 3-a
ngn + 1)F—(n—1),n+2p§ns 0ts_, |- (161c)

2. Recurrence Relations

For resistance functions, the boundary conditions arengive
completely byymn, ¥mn, andwmn, Which are independent of
the distance between the particland thereford, andts_,.
This means that the ciicients Pnpg, Vipg, and Qnpq of the
(p, g)-term in the expansion Wftg,a (see, for example, Egs.
(163a) and (163b) in the following) are solved by the recur-
rence relations fop > 0 andq > 0 with the initial condition
for p= 0 andg = 0. Therefore, we split the above three equa-
tions into two parts, the initial conditions and the recooe
relations. The initial conditions are

C. XFunctions (m= 0)
2n-1

= h1 oot |
n+1 02mirmn For the case o = 0, g andq®® are decoupled with
. (n+ f‘)J(r2r11 -1) (2(:1),2n+1)(§%21’ (160a) others.
2(2n + V@) = lel“g’; @ _ 2($]n+—11)) E‘Q(ml),zxﬁf% 1. XA Function
+Fg% p&f% (160Db) The boundary condition for th¥” problem is given by
@ = mrgﬁﬂ N (160c) XD = Ubnodm, w2 =0, o =0.  (162)



To obtain the cofficients for each order of the powergfwe
expand the cdécients [in (JO-3.4) and (JO-3.5)] as

(@) _

3 o0 [ee)
Py = 5V DT P, (163a)
p=0 g=0
V@) 3 v Vipg Pyd
o = EUZth(,t3_a. (163b)

0 g=0

©
11
e}
I

Substituting the expansions, we have the initial condgtifmm
p = 0 andqg = 0 from Egs. (160a) and (160b) by

p@ _ 5 @

(@) _ ()
noo 2,3 VnOO = 6ml

03 (164)

and the recurrence relations fpr> 0 andq > 0 from Egs.
(161a) and (161b) by

(@ _ = n+s
- (")
s=0

B n(2n — 1)(2’] + 1)F(Q) (3-a)
2(n + l)(2$+ 1) 2,2n+1 7 (g-s-2)(p—n+1)
_n(2n +1)(n+s-2ns-2)
20+ 1)(n+9)(2s-1)
2n-1
_n( n )r(a)

(@) (3—a)
l—‘2(,12n+1 Ps(qiy s)(p—-n+1)

(3-a)

2(n+ 1) 0201 sa-9(p-n-1)|" (165a)
Vi = TGP, (165b)

N N @ pa) _
£ n (I’l+ 1)(2n+ 3) —(2n+1).2" s(g-s)(p-n-1)

Note that the initial conditions correspond to Egs. (KC-Bda
and the recurrence relations except p)q to Egs. (KC-
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also depends om. The explicit forms up ti = 7 are

XAL
fO

XAL
fl

XAL
f2

XAl
f3

XAL
f;

XAL
1:5

XAL
f6

XAL _
f7

27a,c). Equation (163b) is simpler than the corresponding
equation in Keh and Chan (KC-27b), because we use the sim-

pler recurrence relation in Eq. (158a).
The codiicient f*** is defined [in (JO-3.15)] by

(166)

k
XAx ._ ok (@)
fXAe .= 2 Z P g™
g=0

because of the dependence ), and the cofficient fX**

= (1$3).

(167a)
(167b)
(167¢)

A(3rgrey).

A(9rsHrs)),

A(-ar$3rd)

2 (27055’

2 (-ardrs),
A(-24rrird)

2 (81055’

2 (1209)6r ) - arl)).
22 (36r(r&X(sre) - 3ry)
22 (243082
(3605 TS - 3r)).

(167d)

(167¢€)

(167f)

= A(160G2)°T53)

22 (108082 r2)?Ere - ar)))

2 (-T8a8arrd - 72008 @)
~32306Y)

A (216053)°T53(5 53 - 2053)
2°(16(752)(126755 - 901G + SITIy
+4r%,)/5).

22 (487537 (126 53157 ~ TOTGI5,
—45r0rS) + 15@4))? + 4r).)/5)

2 (1620082 @rs) - 1)

A (3r§Ardy@oar§irs) - sear§ire)
~56aT(IrS) + 7200 5))° (I 2)* + 96r §Ire)))
5(16200$2)%(r&)? @ - 1))

A (4853)° (126 3357 — 0TG5y — 45T 6T
+1502)% +4r%,)/5). (167h)

(1679)

The results are identical to those obtained by method ofefle
tions in Egs. (95c), (95a), and (95b) for the terms contajnin
one or twol’s, because only the first influence from the par-
ticles 1 to 2 is taken and the higher reflections are missing in
the present calculation of the method of reflections. There-
fore, A andA? term in f3** do not appear.

Also the results reduce to those byffdey and OnisH? in
the no-slip limity = 0, and those by Keh and Chérin the
Here we see a slight fierence from the no-slip case. This is case ofy; = 7,. Therefore, they also reduce to those by Het-
sroni and Habét in the perfect slip limify = .



2. X Function

With the same recurrence relations and the initial conalitio
for XA, that is, for the translating particles, the functisf is
obtained from the cd&cient Popq for the stresslet instead of
P1pq for the force.

In this case, the cdgcient f X5 is defined by

w2 e as
0
The explicit forms up t&k = 7 are
f el = o, (169a)
fret = (169Db)
5 - i) (1650
£ = 2(45r2rars)). (169d)
fZ(Gl _ ( GF(l)F(2)>
- (3Tt
- (-6, (169€)
i = A(-12r2Erry) + argars?))
Y (405(r(1))2(r(2))2r(1)>
+ (1205l sre) - ard)). (169f)
fXeL = g2 (36(F‘2)) (25(F(1))2_ 101"8%1"(22 r(l)r(l’))
+ (121502 E)°rSL)
+ 24 (0aryrarsier? - ). (169g)
7O = a(1aarird)

2 (L08r{y(r)*(25sd)? — 180 §ArS) - or i)
2*(-3(80ariIre) + 96artIrt)re)

-121505)%)°ry)

~80rG T 6al 54 — 48TGITG3I5))

20 - )

A5 (4853 54(126 5 - 90y + STy

+ar®),)). (169h)
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Note thatQypq is decoupled withP,pq and Vipg for m = 0.
Using the expansion [in (JO-6.4)]

00

(a) _

A =U D, ) Qtets.,, (171)
p=0 g=0
we have the initial condition fop = 0 andg = 0 from Eq.
(160c) by
Qnoo = (5n1r(()73), (172)
and the recurrence relation f@r > 0 andq > 0 from Eq.
(161c) by
o _\[n+s)_s @ (3-a)
Qggq - Z( n )(n+ 1) —(n 1), n+2Qs(q—s—1)(p—n)' (173)
s=0
The codlicient f X% is defined by
k (@) i
R =2 Zlek—q)q ™, (174)

wherej = 0 for evenk andj = 1 for oddk. The explicit forms
up tok =11 are

6 = (To3)- (175a)
et =0, (175b)
=0, (175¢)
R = 2%(8rgargy). (175d)
& =0, (175€)
5 =0, (175f)
8 = 2°(6406)T53). (175g)
7 =0 (175h)
8 = (768 (1G2)%). (175i)
f = 2°(5125XELY). (175))
figh = 47(6144 T(l’ »). (175K)
fXCL — )6 (6 4"(1) 1"(1) F(z)) )

+ A°(61440 (721),4(F8%)2F§2)- (175)

The results are identical to those obtained by method of re-
flections in Egs. (101a), (101b), and (101c) for the terms conThe results are identical to those obtained by method of re-
taining one or twd™s as similar toX*. The results reduce to flections in Egs. (125a), (125b), and (125c) for the terms con
those by Jgrey™ in the no-slip limity = 0. taining one or twd™s. The results reduce to those byffdey

and Onishi® in the no-slip limity = 0 and those by Keh and

Chert® in the case o¥; = 7.
3.  X° Function =72

The functionX® gives the torque for the rotating particles
in the axisymmetric casen(= 0). The boundary condition is
given by

X =

4. XM Function

The functionXM gives the stresslet under a shear flow in

0, v@=0 & =2U8m0n. (170)  the axisymmetric casen(= 0). Therefore, it is derived by the



codficient P,y for the stresslet from the same recurrence re-
lations forX” with a different initial condition. The boundary
condition is given by

2
x5 = §%Ea50m52n, (176a)
2
W&ny% = §aaEa(1_6:)7)50m52n, (176b)
Wi = 0, (176¢)

which correspond to Eq. (J-41) with the correction due to th
slip. Using the expansion [in (J-42) and (J-43)]

P = TaEl )| > PR, (177a)
p=0 g=0
v - O, ii i 0t (177b)
on — 33" “p0q02(2n 1) 3-a’

the initial conditions forP,yq and V,,pq are given from Egs.
(160a) and (160b) by
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D. Y Functions (m=1)

1. YA Functions

The boundary condition for thé* problem is given by
Xioh = (=1)*Ubmadm,

(Note that the equation in ffeey and OnisHP in p.271 lost
the factorU for yp,

p@ =0 =0 (181)

(@)

2.) Again, we expand the céicients byt}

5, as
" (13 [} 00 .
P = (-1) ZZngqtptg (182a)
p=0 g=0
v = 1y ii Vi g . (182b)
n — 2 2(21 1) 3-a’
p=0 g=0
ay = -iU > >R . (182c)
p=0 g=0

Also note that in J&rey and Onishi? the minus sign in the
right-hand side of (JO-4.5) is missing. Substituting these
pansions into Egs. (160a), (160b), and (160c), the initalc

ditions are given by

Pio = Sznl 52, Vigh = ol (2. (178)
The codficient f™* is defined by
M= 2“2 P - (179)

PO s 1@ y@ _s [ o0 g

noo — 23 no0 — Ont 03’ QnOO (183)

wherej = 0 for everk andj = 1 for oddk. The explicit forms ~ Which correspond to (KC-37a,b,c). From Egs. (161a), (161b)
up tok = 7 are and (161c), the recurrence relations are given by
FXML (F(zlé) , (180a) Pglp)q _ Z( n+ ]s-)
n
fM =0, (180b) SN+
XML = o, (180c) 2@+ -1 @) e
fXMl 4OF(1)F(2) 180d 3 n+1 2,2n+1<g(g-s-1)(p—-n+1)
8 - ( 25 25) ( ) n(2n + 1)(2’] - 1)F(Q) V(3,(Y)
M = (60F ©) l"(l)) ) (180e) 2(n+ 1)(2s+ 1) 221" sa-s-2)(p-n+1)
1)~(2 2n+1n n+s-2ns—2)-(2ns-4s-4n+2
g = (a0 . = )
4 (1) 2) (1) 1=(2) n+ 1 25(2s-1)(n+9)
+ A (18(1“ F F25F25) 1_,((,) P(g @)
5 (2) (1) f 22n+1" s(g-s)(p—n+1)
+ A (—192roysr2’5), (180f) 0201 ) pa -
R = (~28arQre)rey) 20+ 1) 02 -1 (1843)
+ /12 (540*(1) (2) (1) 2)
) ) . Vi, = TSIP&, (184b)
+ 2°(16005Y)° (1or< ) ary)). (180g)
2 1 1)1 1) (D)2 n+s 2n (@) (3-a)
FML = 24 (48r5)(5005)% - 20rGArS) — argArsHr)) + Z( n+ 1) T Dn+3) el sasen-1y
+ 1°(1620€%2)? r(z’)zr(l’r‘fg)
+ °(48rArid(s0aR)? - 20rre oo i( n+ S)
@ =
_91"(2)1"(2))) (180h) Pa = n+1

S @

The results are identical to those obtained by method of re- X m S, MQS(q - 1)(p-n)

flections in Egs. (143a), (143b), and (143c) for the terms con
taining one or twds. The results reduce to those byfdey'* 3 1 @ P
in the no-slip limity = 0. 2nsn + _1) ~(n-1),n+2" S(a-9)(p-n)

. (184c)
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Note that Egs. (184a) and (184c) correspond to (KC-38a) and 2. YB Functions
(KC-38b), while Eq. (184b) is simpler than Eq. (KC-38c).

e .
The codficientf," is defined by The problem fory® is exactly the same for”. The difer-

ence is that the force is calculated YA while the torque in
YB. Correspondingly, The céiécient f,Y® is defined by

YAy . k (@)
frAr = 2 Z S g™ (185)

fYB .= 2 2“2 QW 29, (187)

1k~ Q)q
The explicit forms up t«k = 7 are

for Q1pq Obtained by the recurrence relations ¥t. The ex-

fYAL = (F(l)) (186a) plicit forms up tok = 7 are
iy = a(3rira/2). (186b) e (1884a)
AL ( (F(l))zr(z) ) (186¢) fYE = 0, (188b)
(A = a(ryrd) 7% = a(-erre), (1850)

+ (27082 3)?/8) fyB = a(-9aryrsrs). (188d)

4 /13(21"23%1"(22), (186d) fIBl — 2(—27F(1)F(1)(F(2))2/2> (188e)
™ = a(eriyring) W = (2

+ A2(8105Y)(r$)?/16) + A2(-8Ir RS2 ed)?/4)

+ 2 (183w, (186e) + A3 (=36r3rarsy). (188f)
f5YA1 — /12(63F(1)F(1) (2))2/2) ngi — /12( 108(1~(1) (2) )

+ (243059 R)*/32) + 2 (-243Yr) (F(Z))a /8)

+ 24 (6arHrNIreY/2). (186f) + A4(- 72r(1)r(2)r(1)r(2)) (188g)
fof = A(4r)s)) Y8 = 22(-189€5)rSaCH)?)

+ (5 r)Aray?) + A3(-3r§3(256a A + 243C5)3(rY)%) /16)

+ A3 (TA(72905))% (T2 + 51§ /64) + A4 (-24TGIrAwsHTe))

+ A4 (8IrHrs)°rs)) + (4o Qrard - erd —ar@ ). (188h)

+ A°(4r)?rd) + srOrS + 600,

o The results are identical to those obtained by method of re-
+4175,)/ 5), (1869) flections in Egs. (113a), (113b), and (113c) for the terms con
YAL _ 52 (2)y2 ) (1) (1) (1) 2 taining one or twd™s. The results reduce to those byftdey
5 =4 (6(1"2!3) (er al27 + 6002115 + 350,) and Onishi® in the no-slip limity = 0 and those by Keh and
+4rt) )/5) Chert®in the case of; = 7».

+ 23 (1053 A R)/8)

+ 24 (3r<21;r<22g(729(rgg)%r(fgf + 5632"8%1“%) /128)

3. Yé Function
+ 2° (1053 )3 CR)?/8)
+ A5 (6(rY)2QIrAre) + 60r% 1) + 350%)? With the same recurrence relations and the initial conulitio

(186h) for YA, that is, for the translating particles, the functiéh is
obtained from the cdicient P,,q for the stresslet instead of
P1pq for the force.

The results are identical to those obtained by method of re- In this case, the cdicient fY* is defined by

flections in Eqgs. (108a), (108b), and (108c) for the terms con

taining one or twd™s. The results reduce to those byffdey

and Onishi® in the no-slip limity = 0 and those by Keh and fYC = ( )zk Z P(Zal)( 29, (189)
Chert®in the case 0¥y = 7. (oo

+4r(_2§’3) /5) .



The explicit forms up t&k = 7 are

f(;( Gl
fye
fZY Gl
f3Y Gl

YG1
f4

YGL
1:5

YGL
f6

YG1
f7

+ o+ o+

+

0
0
0
0
A(12r0r5))
2 (207gr53).
A(18rgirears))

2 (90r@rriy),

2 (2 Ard )
A (13 Griyrarsd).
A(2ar§riird)
A2 (8IT§AUTS)ATEN?/2)

(190a)
(190b)
(190c)
(190d)

(190e)

(190f)

(1909)

3 OrO@ _ srOr@QD _ 3r@r® W
A3 (~8(5T AT s — BT A 52 — TATEArS2))

A4 (405%) (r(1>)2r‘2> s 2)

A5 (8r9rsd(sery) - sor + srore, + 400,

+4r9.)).

02" 03

(190h)
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up tok =7 are

fo = (r53). (193a)
iy = o, (193b)
;% =0, (193c)
fy = 22(ariirdl). (193d)
[ = a(1202)°r8). (193e)
f = 24 (180ArArSIrs)). (193f)

A /12227@(1))21{1) (2) )
+ °(1605)? (15r<2) +T®),  (1939)
AL /14(72(F(1))2F(2)1"(2))
+ 2 (8r@rArt)ewrdy? 2)
+ (7T E)SY). (193h)

The results are identical to those obtained by method ofefle
tions in Eqgs. (130a) and (130b) for the terms containing one
or twoIs. The results reduce to those byfdey and OnisHf

in the no-slip limity = 0 and those by Keh and Chérin the

case ofy; = 75.

5. Y Function

With the same recurrence relations and the initial conalitio

The results are identical to those obtained by method of refor Y©, that is, for the rotating particles, the functiofi' is

flections in Egs. (119a), (119b), and (119c¢) for the terms conobtained from the cdicient P,,q for the stresslet instead of
taining one or twd’s. The results reduce to those byfdey'*
in the no-slip limity = 0.

The functionY® gives the torque for the rotating particles

4. Y° Function

with m = 1. Therefore, it is derived by the ceient Qypq
for the torque from the same recurrence relationsvfowith
a different initial condition

(@) _ (@) _ (@)
PnOO =0, VnOO =0, Q

noo

In this case, the cdicient f! < is defined by

wherej

k
YCa ._ ok ()
i =2 Z lequ)q
q=0

pLu ,

= 61D

(191)

(192)

= 0 for evenk andj = 1 for oddk. The explicit forms

Q1pq for the torque.
In this case, the cdgcient f,"" is defined by

k
3 _
YHe ._ _ [ 2ok (@) g+j
firHe = ( 8)2 Z PS g™ (194)
q_
wherej = 0 for evenk andj = 1 for oddk. The explicit forms
up tok =7 are

f," =0, (195a)
frH = 0, (195b)
fyH = 0, (195c¢)
iy = 22 (10rArsy). (195d)
f," =0, (195e)
foH = 0, (195f)

g™ = 2(24rg3ror53)

v 23(-aorri)erd - 2r).  (1950)
FYHL = g4 (36F gzgr(()lér(zlgr(zzé)

+ (1800 QYrdrd). (1950

The results are identical to those obtained by method of re-
flections in Egs. (136a) and (136b) for the terms containing
one or twol's. The results reduce to those byfdey'* in the
no-slip limity = 0.
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6. YM Function E. ZFunctions (m=2)

The functionYM gives the stresslet under a shear flow for The boundary conditions are given by
m = 1. Therefore, it is derived by the diigient Pppq for
the stresslet from the same recurrence relation¥fowith a @ _ 1, e
different initial condition. The boundary conditions are Xmn = 3(=1)7 8 Eadamdan, (2012)

1
4G = (D E (1~ 6)ombm,  (201b)

2
Xiih = 3(-1)"8Eadimdan. (196a)
5 W@ =0, (201c)
@ = Z(=1)8,E.(1 — 67)51mOan, (196Db)
m 3 e which correspond to Eq. (J-69) with the correction due to the
w@ =0, (196¢c)  slip. The expansions used here are [in (J-70), (J-71), and (J
72)]
which correspond to Eq. (J-54) with the correction due to the
slip. The expansions used here are [in (J-55), (J-56), and (J ) o X
57)] pY = (-1 %E{,ZZ Popgthtd_ (202a)
p=0 g=0
(@) _ @ p:a _ n
pin = (-1)—aE, Prpatats o (197a) WV = (—1)3 —aaEa —P _tPd  (202b)
n 3 ;} ;} 2n ;} ;} 2(2n + 1) 3-a
V@ = (_1)(x1_0 E i i Vipg Ptq (197b) (@) o
In = 3 &= 2(2n + 1) 3o G = i3 aaEaZZ Qnpqlets.,- (202c)
p=0 g=0 p=0 g=0
Qi = I_aaE(z Z Qnpatity - (197c)  From Egs. (161a), (161b), and (161c), substitutimg 2 and
p=0 q=0 the above expansions, the recurrence relations are given by
The initial conditions are given from Egs. (160a), (160lny a )
o n+s
(160c) by P@, = Z( N 2)
() () (@) () () -
Pn(cy)o = ans’ Vn(éo = On l“oas’ Qn(z)o =0. (198) % 2(2n+ 1)(2n-1) @ Q(3—a)
n+1 22n+1 s(q—s-1)(p—n+1)
In this case, the cdicient f,"™* is defined by n2n+ D@ -1) 0 e
‘ 2(n + 1)(25+ 1) 2,2n+1 7 §(g-s-2)(p—n+1)
fY Mo = ZKZ P(2(Zl)<—q)q/lq”’ (199) +2n +1ngn+s—2ns—2)—2%(2ns—4s—4n+2)
n+1 252s-1)(n+9)
. . o XF(Q) p(3 @)
wherej = 0 for evenk andj = 1 for oddk. The explicit forms 22n+1" (g-s)(p-n+1)
up tOk = 7 are n(2n 1) (a) (3—(1)
2(n+ 1) 02n+1Ps(p—s)(p—n 1) (2033‘)
YML _ (1)
M = (r52). (200a)
Y M1 v = 1"(“) p@ 4+ Z n+ S
f) = 0, (200b) npq npq
fYML = (200c) 2
2YM1 3 L) —nl"(_")2 0 PED (203b)
M = a3(-20r50r%)). (200d) ()@ +3) (@n+1)27 §(a-9)(p-n-1)
;M =0 (200e) (@) n+s
j Qnpa =
2 (12 UrQ) ; nt2
@) S @ (3-a)
+ (12305r25) (ZOOf) (n+ 1) —(n 1), n+2Qs(q—s—1)(p—n)
g™ = 23(800SYA(IYL +3r)).  (2009) 2w o
f7YM1 - 0. (200h) _mr—(n—l),mzps(q—s)(p—n) . (ZOSC)

The results are identical to those obtained by method of reThe initial conditions are obtained from Eqgs. (160a), (160b
flections in Egs. (148a), (148b), and (148c) for the terms conand (160c) as

taining one or twd™s. The results reduce to those byfiey'*

in the no-slip limity = 0. PGy = onl5s, VG =6al(2, QUp=0.  (204)
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In this case, the cdicient kaM“ is defined by scaled slip lengths without strain flows. The present result
have confirmed to recover these existing results, thatdseth
k _ by Jefrey et al13>4in the no-slip limit, and those by Keh and
fieM = Zkz YL (205)  Chert®in the case of equal scaled slip lengths. We have also
=0 derived the resistance functions by method of reflectionnk an

wherej = 0 for everk andj = 1 for oddk. The explicit forms confirmed the consistency with the twin multipole expansion

up tok = 11 are The present solutions of two-sphere problem cover much
wider range than the previous solutions. Because the [gartic
feML = (F(zlé) (206a) radii and slip lengths can be chosen independently, the solu
ML tions cover not only the problem of two bubbles (demonstrate
f] =0 (206b)  in Keh and Chetf) but also pair of solid particle and gas bub-
7ML = 0, (206c)  ble, for example, with arbitrary sizes.
£ZML _ (206d) In addition to these fundamental aspects in fluid mechan-
3ZM1 ’ ics, the solutions of slip particles is quite important fgr a
fi =0 (206e)  plications such as micro- and nanofluidics, where the ro-sli
fZML = 33 (32["81%1"(22%) boundary condition may break. This should be stressed: espe
s (é) (i) cially from the fact that the solutions of slip boundary cend
+ A (321"0,51"2,5), (206f)  tion are relatively limited to the no-slip case.
&M = 0, (206Q) Using the multipole expansions and Eass laws derived in
f7ZM1 -0 (206h) Fhe present paper, r.ecentlly the Stokesian dynamic§ nméthod
- 5 A ® . is extended to the slip particléBecause the lubrication cor-
e = A5 (160@52)%(7rs) + 8% )/3) . (206i)  rections are missing in the formulation, the applicability
fgzvvu -0, (2086j) !imite_d to relatively dilute con_figurations. The pr_esentrWo _
o1 3 N2r2) is a first step of an attempt to improve the Stokesian dynamics
it = A3(1024¢5)7T3) method for slip particles at the level of the no-slip pagicl
5(_ D) @ _ @ Unfortunately, the attempt is not achieved yet, becauskeof t
+ A ( 258 5515(35737 81"0’5)) lack of lubrication theory for resistance functions of sigrti-
+ A7(128050)%(162a°%) - 52 ) - 525°) cles (with some exceptidf). Although the present solutions

@) @ @ are in the form of Ir expansion, they are complete set, that
+168,l 05+ 700755 + 321H—5,2)/21)’ (206k) is, all 11 scalar functions for all pairs of particleg. It is

lelMl = 0. (206l)  hoped that the present study would help completing lubrica-
tion theory and the Stokesian dynamics method for arbitrary
The results are identical to those obtained by method of reslip particles.
flections in Egs. (153a), (153b), and (153c) for the terms con
taining one or twd™s. The results reduce to those byfiey'*
in the no-slip limity = 0.

The computer programs used in the paper and the results
of codfticients in mathematical form for higher orders (up to
k = 20) will be available on the open source project “RYUON-
twobody” (http://ryuon.sourceforge.net/twobody/).

V. CONCLUDING REMARKS

We have extended the calculations of resistance functions
of two spheres with arbitrary size by the method of twin mul-
tipole expansions in linear flows byfieey and OnisH# and
Jeffrey' to the slip particles with Navier’s slip boundary con-
dition with arbitrary slip lengths. This complements thepr One of the authors (KI) thanks Professor Davittrégy for
vious results of slip particles by Keh and Ch&for the same  his kind support and fruitful discussions.
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