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Abstract The mixture stress of non-uniform suspensions is expressed by the symmetric part and the anti-
symmetric parts with the pseudo and the real vectors. The closure relations for the three components of the
stress are derived from the basic criteria such as Galilean invariance and parity. By the numerical simulations
of many particles under the Stokes approximation with the non-uniform ensemble averaging technique and the
systematic parameterizations, the closure coefficients including the effective viscosity are determined in the
large system limit. The resultant closure relations are valid not only for the specific problem but for force,
torque, and shear problems, and, as a result, for arbitrary flows generated by the linear combination of the three
problems, because of the linearity of the Stokes approximation.

1 Introduction

One of the most important problems of suspensions is to derive the governing equation from the
detailed many-body dynamics. The present work takes into account non-uniformity systematically,
and derives the constitutive relation of the mixture stress from detailed numerical simulations of
particles [6, 4].

Using numerical simulations of many particles under the Stokes approximation [7], we solve three
types of problems – force, torque, and shear problems – under the periodic boundary condition. From
the simulations, we can evaluate any quantities, such as translational and angular velocities of particle,
mixture velocity, and viscous stress [8].

It is found [3] that there are couplings among three problems for non-uniform suspensions, while
they are independent for uniform suspensions. In fact, for uniform suspensions, the slip velocity
between the particles and the mixture is non-zero only in the sedimentation problem, the slip angular
velocity is non-zero only in the torque problem, and the strain of the mixture is non-zero only in
the shear problem. Therefore, the non-uniformity is important to capture the general behavior for
arbitrary situations, which can be formed by a linear combination of the three problems from the
linearity of the Stokes approximation.

For this aim, we first formulate a non-uniform ensemble averaging technique [5, 3] in §2. To
compile various components of the non-uniform average for various quantities in various problems,
parameterizations for arbitrary vectors, pseudo vectors, and symmetric traceless tensors are intro-
duced in §3. In terms of the results of the non-uniform averages shown in §4, we determine the
closure relations for the mixture stress of non-uniform suspensions in §5.

2 Non-uniform ensemble

In this section, we demonstrate how to evaluate ensemble averages for a non-uniform suspension on
the basis of a statistically uniform ensemble of random arrangements of particles inside the funda-
mental cell, thus avoiding the generation of an actual non-uniform ensemble. The problems are solved
in the fundamental cell with periodicity boundary conditions.
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2.1 Universal ensemble
For the non-uniform ensemble averaging, we prepare “universal ensembles” consisting of random
hard-sphere configurations for the particle volume fraction φ between 1 and 50% and the number of
particles Np between 10 and 160. The number of configurations Nc in each ensemble are between
256 and 2048. The statistical errors in the ensemble averages decrease rather slowly as 1/

√
Nc.

In principle, this ensemble contains all possible configurations, uniform as well as non-uniform.
If an equal probability weight is assigned to each configuration, the resulting ensemble averages will
correspond to a homogeneous system. However, by giving the configurations unequal weights, this
same ensemble can generate a spatially non-uniform system. It is for this reason that we refer to the
ensemble thus constructed as “universal.”

2.2 Uniform and non-uniform averages
Each realization Ci of the ensemble consists of a set of vectors x1

i ,x
2
i , · · · ,x

Np

i denoting the position
of the center of particle 1, 2, · · · , Np. Given a generic quantity A(Ci) pertaining to the i-th realization
of an ensemble of Nc configurations {C1, . . . , CNc

}, we define its average by

〈A〉 =
1

Nc

Nc
∑

i=1

W(Ci) A(Ci), (1)

where the W(Ci)’s are suitable weights. Clearly, when all the weights are taken equal to 1, we have
the uniform-ensemble average, denoted by the index 0:

〈A〉0 =
1

Nc

Nc
∑

i=1

A(Ci). (2)

To generate weights for the non-uniform ensemble, we introduce a function w(x), and assign to
the i-th realization Ci the weight W(Ci) defined by

W(Ci) =
1

Np

Np
∑

α=1

w(xα
i ) =

1

Np

∫

dx w(x)ni(x) =
1

n0

∑

k

w̃(k) ñi(−k), (3)

where ni(x) is the number density for the realization Ci defined by

ni(x) =
Np
∑

α=1

δ (x − xα
i ) , (4)

ñi(k) is the Fourier coefficient given by

ñi(k) =
1

V

∫

dx eik·xni(x) =
1

V

Np
∑

α=1

eik·xα
i , (5)

n0 = Np/V , and V = L3 is the volume of the fundamental cell. The relation between the function
w(x) and the spatial structure of the ensemble is readily found by calculating the average number
density with the above-defined weights [3] as

w̃(k = 0) = 1, w̃(k 6= 0) =
V

S(k)
ñ(k), (6)

where ñ(k) is the Fourier coefficient of the prescribed number density, and S(k) is the structure
factor.
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2.3 Field and particle quantities
In this method, formulations and calculations are done in the Fourier space. For a generic field
quantity A(x), we expand it in a Fourier series as

A(x) = Ã(0) +
∑

k>0

{

Ãc(k) cos (k · x) + Ãs(k) sin (k · x)
}

, (7)

where the symbol k > 0 appended to the summation restricts it to wave numbers all the components
of which are positive, and Ãc(k) and Ãs(k) are defined by

Ãc(k) =
2

V

∫

dx A(x) cos (k · x) , Ãs(k) =
2

V

∫

dx A(x) sin (k · x) . (8)

In addition to field variables, the averages of quantities Aα carried by each particle α, such as the
translational and angular velocity, are of interest. To calculate these averages, we first transform Aα

to a field variable by writing

A(x) =
Np
∑

α=1

δ (x − xα) Aα, (9)

and then, the Fourier coefficients are given by

Ãc(k) =
2

V

Np
∑

α=1

Aα cos (k · xα) , Ãs(k) =
2

V

Np
∑

α=1

Aα sin (k · xα) . (10)

After this step, the particle average is calculated, in terms of the proper normalization, as

〈A〉P (x) =
〈A〉(x)

〈n〉(x)
. (11)

In the formulation, we can treat in a unified way both field and particle quantities through their Fourier
coefficientsÃ(k).

2.4 Linear sinusoidal non-uniformity
In the present study, we limit ourselves to a non-uniform suspension with a weak spatial non-uniformity
specified by the number density

n(x) = n0 (1 + ε sin (k · x)) , (12)

where ε is a small parameter denoting the degree of non-uniformity, and we present results valid to
the first order in this quantity. We take |k| equal to the smallest wave number as

ka =
2πa

L
=

(

6π2φ

Np

)1/3

, (13)

where a is the particle radius. With this choice of n(x), all the weight coefficients vanish except

w̃(0) = 1, w̃s(k) = εn0
V

S(k)
, (14)

where w̃s is sin coefficient of w(x). Therefore, the non-uniform ensemble average of a the Fourier
coefficientsÃ becomes

〈Ã〉 = 〈Ã〉0 + ε〈Ã〉s, (15)
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where the non-uniform part 〈Ã〉s is given by

〈Ã〉s =
1

2

V

S(k)
〈ñs(k) Ã〉0, (16)

with, on the basis of (5),

ñs(k) =
2

V

Np
∑

α=1

sin (k · xα) . (17)

The ensemble average of the Fourier expansion (7) therefore takes the form

〈A〉(x) = 〈Ã(0)〉0 + ε
[

〈Ãc(k)〉s cos (k · x) + 〈Ãs(k)〉s sin (k · x)
]

, (18)

since all other coefficients vanish, and for particle averages, (11) gives, up to O(ε),

〈A〉P (x) =
1

n0

{

〈Ã(0)〉0 + ε
[

〈Ãc(k)〉s cos (k · x) +
(

〈Ãs(k)〉s − 〈Ã(0)〉0
)

sin (k · x)
]}

. (19)

3 Parameterization

To study the general behavior of suspensions, it is useful to present the results using a suitable param-
eterization. We study three kinds of mobility problems for non-uniform suspensions – force, torque,
and shear problems.

3.1 Force problem
For the force problem, i.e., sedimentation, we conduct numerical simulations where the same force
F0 is applied to each particle. The uniform version of this problem is therefore characterized by a
single fundamental vector

WF =
F0

6πµa
(20)

with µ the fluid viscosity, and, therefore, any vectorial dependent variable p, such as the mean settling
velocity, must take the form

〈p〉 = [p]0F WF , (21)

where [p]0F is a coefficient calculated numerically by taking the ensemble average of the values of p.
When we turn to the non-uniform case, in addition to WF , also the wave vector k specifying the

direction of the non-uniformity in (12) is introduced. Therefore, it must be possible to parameterize
the non-uniform part of each vectorial dependent variable as

〈p〉 = [p]‖F W
‖
F + [p]⊥F W⊥

F , (22)

where the superscripts ‖ and ⊥ are based on the direction of the unit wave vector k̂ and

W
‖
F =

(

k̂k̂
)

· WF , W⊥
F =

(

I − k̂k̂
)

· WF . (23)

Clearly, WF = W
‖
F + W⊥

F . The only characteristic pseudo-vector is

aω⊥
F = k̂ × WF , (24)

which is perpendicular to k; the factor a is included so that ω⊥
F has the dimensions of an angular

velocity. Therefore, any pseudo vector q must be parameterized as

〈q〉 = [q]⊥F ω⊥
F . (25)

Note that ak̂ × ω⊥
F = −W⊥

F , and the parallel component ω
‖
F is zero.

4



5th International Conference on Multiphase Flow, ICMF’04
Yokohama, Japan, May 30-June 4, 2004

Paper No.259

3.2 Torque problem
In the second problem, we apply a constant torque T0 to each particle and use the subscript T to
denote the pertaining quantities. Here, for the uniform case, pseudo vectors must be parameterized as

〈q〉 = [q]0T ωT , (26)

with

ωT =
T0

8πµa3
. (27)

For the non-uniform case we have a single vector and two pseudo vectors:

W⊥
T = ak̂ × ωT , ω

‖
T =

(

k̂ · ωT

)

k̂, ω⊥
T =

(

I − k̂k̂
)

· ωT . (28)

Note that k̂ × W⊥
T = −aω⊥

T .

3.3 Shear problem
In the third problem, we apply a linear shear flow, so that, even in the uniform case, there is an
imposed velocity field given by

u∞(x) = E
∞ · x. (29)

where E∞ is the rate-of-strain tensor of the flow. The corresponding results will carry an index E.
Because we cannot construct any vector or pseudo vector from E∞ only, there cannot be any uniform
contribution to vectors a or pseudo-vectors b for the shear problem. In the non-uniform case, one can
construct two characteristic vectors and one characteristic pseudo vector:

W
‖
E = a

(

k̂k̂
)

·
(

E
∞ · k̂

)

, W⊥
E = a

(

I − k̂k̂
)

·
(

E
∞ · k̂

)

, ω⊥
F = k̂ ×

(

E
∞ · k̂

)

. (30)

Note that ak̂ × ω⊥
E = −W⊥

E .

3.4 Symmetric traceless tensor
For a quantity in the form of symmetric traceless tensor, such as deviatoric viscous stress, the similar
parameterization is also expected. For uniform situations, we have only in the shear problem a sym-
metric traceless tensor E∞, while for non-uniform situations, we also have two kinds of tensor for all
problems:

G
⊥ = W⊥k̂ + k̂W⊥, G

‖ =
1

2

(

W‖k̂ + k̂W‖
)

− 1

3

(

k̂ · W‖
)

I, (31)

where each vector W carries the appropriate index F, T , or E.

3.5 Summary
Because of the linearity of the Stokes flow, the results for these three problems can be superposed.
Therefore, vectors 〈p〉, pseudo-vectors 〈q〉, and symmetric traceless tensors 〈s〉 are generally param-
eterized as

〈p〉 = [p]0F WF + [p]‖F W
‖
F + [p]⊥F W⊥

F + [p]⊥T W⊥
T + [p]‖E W

‖
E + [p]⊥E W⊥

E , (32)

〈q〉 = [q]0T ωT + [q]‖T ω
‖
T + [q]⊥T ω⊥

T + [q]⊥F ω⊥
F + [q]⊥E ω⊥

E , (33)

〈s〉 = [s]0E E
∞ + [s]EE E

∞ + [s]‖E G
‖
E + [s]⊥E G

⊥
E + [s]‖F G

‖
F + [s]⊥F G

⊥
F + [s]⊥T G

⊥
T . (34)

The coefficients in the averages denoted by [ ] in the above parameterizations are the building blocks
of the present analysis of non-uniform suspensions.
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Figure 1: (ka, φ)-dependence of the averages [U ]0F and [S]⊥E . The points are the numerically calcu-
lated ensemble averages and the lines least-squares fits.

4 Averages

4.1 Particle translational and angular velocities
The particle velocity U is a vector, and parameterized as

〈U − U∞〉P (x) = [U ]0F WF + ε sin (k · x)
(

[U ]‖F W
‖
F + [U ]⊥F W⊥

F

)

+ ε cos (k · x) [U ]⊥T W⊥
T + ε cos (k · x)

(

[U ]‖E W
‖
E + [U ]⊥E W⊥

E

)

. (35)

The components of the non-uniform average [U ]’s depend on the number of particles and the size
of the fundamental cell (Np, L), or equivalently, the wave number and the volume fraction (ka, φ).
Because the k-dependence partially has the effect of the system size, our interest is rather in the φ-
dependence. Therefore, we first fit the averages by the simple combination of powers of ka, and
obtain the fitting coefficients depending on φ. For [U ]0F , we have the k-fitting

[U ]0F (ka, φ) = A[U ]0F + (ka)B[U ]0F , (36)

where A and B are obtained by the least square method (See Fig. 1). The constant term A[U ]0F is the
hindrance function for sedimentation, U(φ):

A[U ]0F = lim
k→0

[U ]0F = U(φ). (37)

Therefore, A[U ]0F is the sedimentation velocity extrapolated to infinite cell size. Figure 2 shows U(φ).
Note that our numerical results are the solutions of the many-body problems including multipoles
only up to the fifth order.

Similarly, for the particle angular velocity Ω, we have

〈Ω − Ω∞〉P (x) = [Ω]0T WT + ε cos (k · x) [Ω]⊥F ω⊥
F

+ ε sin (k · x)
(

[Ω]‖T ω
‖
T + [Ω]⊥T ω⊥

T

)

+ ε sin (k · x) [Ω]⊥E ω⊥
E . (38)

For fixed φ, the uniform part of the particle angular velocity has essentially no k dependence and is
well fitted by a constant:

[Ω]0T (k, φ) = A[Ω]0T = Ω(φ), (39)

where Ω(φ) is the hindrance function for the torque problem (See Fig. 2).
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Figure 2: Hindrance functions for sedimentation U(φ) and rotation Ω(φ).

4.2 Mixture velocity
The mixture velocity um, in other words, the volumetric flux is also important quantity. Since the
mixture is incompressible as a whole,

∇ · um = 0. (40)

Therefore, all parallel components vanish and it is parameterized as

〈um − u∞〉(x) = ε sin (k · x) [um]⊥F W⊥
F + ε cos (k · x) [um]⊥T W⊥

T + ε cos (k · x) [um]⊥E W⊥
E . (41)

The angular velocity of the mixture, Ωm, is given by

Ωm =
1

2
∇× um. (42)

Therefore, all components in the parameterization are obtained by those of the mixture velocity um.

4.3 Slip velocities
The translational slip velocity 〈u∆〉 is defined by

〈u∆〉 = 〈U − U∞〉P − 〈um − u∞〉. (43)

From the parameterizations (35) and (41), we have

〈u∆〉(x) = [u∆]0F WF + ε sin (k · x)
(

[u∆]‖F W
‖
F + [u∆]⊥F W⊥

F

)

+ ε cos (k · x) [u∆]⊥T W⊥
T + ε cos (k · x)

(

[u∆]‖E W
‖
E + [u∆]⊥E W⊥

E

)

. (44)

For the force problem, the slip velocity is characterized by the hindrance function U(φ) as

[u∆]0F = U(φ), [u∆]‖F = φ
dU

dφ
, [u∆]⊥F + C(φ) (ka)2[um]⊥F = φ

dU

dφ
, (45)

where C is defined by

C(φ) = lim
k→0

1

(ka)2 [um]⊥F

(

[u∆]‖F − [u∆]⊥F

)

. (46)

Figure 3 shows [u∆]‖F , [u∆]⊥F , and φ (dU/dφ), where the derivative of the hindrance function is evalu-
ated by numerical differentiation of the results for [u∆]0F . Difference between [u∆]‖F and [u∆]⊥F shows
the existence of C(φ). Equation (45) suggests the Faxén-like relation

U(φ)
F0

6πµa
= 〈u∆〉 − C(φ) a2∇2〈um〉. (47)
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Figure 3: Comparison among φ (dU/dφ), [u∆]‖F , and [u∆]⊥F , and that among φ (dΩ/dφ), [Ω∆]‖T , and
[Ω∆]⊥T .

The slip angular velocity Ω∆ is defined similarly by

〈Ω∆〉 = 〈Ω − Ω∞〉P − 〈Ωm − 1

2
∇× u∞〉, (48)

and parameterized as

〈Ω∆〉(x) = [Ω∆]0T WT + ε cos (k · x) [Ω∆]⊥F ω⊥
F

+ ε sin (k · x)
(

[Ω∆]‖T ω
‖
T + [Ω∆]⊥T ω⊥

T

)

+ ε sin (k · x) [Ω∆]⊥E ω⊥
E . (49)

For the torque problem, the slip angular velocity is characterized by Ω(φ) as

[Ω∆]0T = Ω(φ), [Ω∆]‖T = [Ω∆]⊥T = φ
dΩ

dφ
, (50)

as shown in Fig. 3. This implies that the local slip angular velocity is only dependent on the local
value of the rotational hindrance function:

Ω(φ)
T0

8πµa3
= 〈Ω∆〉. (51)

5 Closure relations

We will use as our starting point an expression for the particle stress Σ developed in Ref. [8], where
the divergence of the stress can be written as

∇ · Σ = µ
[

∇2um + ∇ · S + ∇× (R −∇× V)
]

. (52)

Here S is a traceless symmetric two-tensor, R an axial vector, and V a polar vector. As shown in
Ref. [8], the exact expressions of S, R, and V involve an infinite series of multipole coefficients. In
this paper, we will limit our consideration up to the fifth order of the multipoles. We may also note
that, in the dilute limit, it is possible to show that

S = 5φEm, (53)

R = 3φΩ∆, (54)

V =
3

10
φ u∆ +

1

7
a2

Em · ∇φ − 11

140
φa2∇2um, (55)
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where Em is the rate-of-strain tensor of the mixture defined by

Em =
1

2

[

∇um + (∇um)†
]

. (56)

Equation (53) is the well-known Einstein viscosity correction.

5.1 The symmetric part of the stress
We assume that the contributions to the stress can be expressed in terms of the local particle volume
fraction φ, mixture velocity um, the slip velocity u∆, and the slip angular velocity Ω∆. Since S is a
symmetric traceless tensor, if such a representation is possible, it must have the form

S = 2 (µe − 1) Em + 2µ∆E∆ + 2µ∇E∇ + 2µΩEΩ + · · · , (57)

where E∆, E∇ and EΩ are defined respectively by

E∆ =
1

2

[

∇u∆ + (∇u∆)†
]

− 1

3
(∇ · u∆) I, (58)

E∇ =
1

2

[

u∆∇φ + (u∆∇φ)†
]

− 1

3
(u∆ · ∇φ) I, (59)

EΩ =
1

2

{

[∇ (∇× Ω∆)] + [∇ (∇× Ω∆)]†
}

. (60)

In (57), µe is the usual effective viscosity (normalized by the viscosity of the suspending fluid), while
the other µ’s are additional viscosity parameters.

The symmetric stress S can also be calculated from the results of the numerical simulations and
the ensemble average is parameterized as

〈S〉 = [S]0EE
∞ + ε sin (k · x)

(

[S]EEE
∞ + [S]⊥EG

⊥
E + [S]

‖
EG

‖
E + [S]⊥T G

⊥
T

)

+ ε cos (k · x)
(

[S]⊥F G
⊥
F + [S]

‖
F G

‖
F

)

. (61)

At this point, both sides of the closure relation (57) have the form of a linear combination of the
tensors E∞, G⊥, and G‖. Taking into account the k-dependences of averages, we only have the first
term in (57) with the effective viscosity µe, in the limit k → 0, as

S = 2 (µe − 1) Em, (62)

and we find several expressions for the effective viscosity:

µe − 1 = lim
k→0

[S]0E
2

, (63)

dµe

dφ
= lim

k→0

[S]EE
2φ

, (64)

µe − 1 = − lim
k→0

[S]⊥E
(ka)[um]⊥E

, − lim
k→0

[S]⊥T
(ka)[um]⊥T

, and lim
k→0

[S]⊥F
(ka)[um]⊥F

. (65)

In the dilute region φ ≤ 0.05, µe is well fitted by

µe = 1 +
5

2
φ + 5.07φ2, (66)

which is consistent with the existing theoretical results [1, 2].
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An excellent consistency can indeed be observed in Fig. 4, which shows µe calculated from the
uniform part of the shear problem (open squares), and from the non-uniform parts of the shear problem
(open circles), of the torque problem (up-triangles), and of the force problem (down-triangles). A
further consistency test is offered by comparing Eq. (64) for dµe/dφ with the derivative calculated
from the fitting. The observed consistencies imply that, µe is a robust quantity which has the same
value in three very different physical situations, and for weak spatial non-uniformity as measured by
ε in Eq.(12), the effective viscosity only depends on the local value of the volume fraction.
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Figure 4: µe and dµe/dφ.

5.2 The axial vector of the antisymmetric stress
As in the case of the symmetric stress, the closure relation for the axial vector of the antisymmetric
stress R is given by

R = R1Ω∆, (67)

in the limit of k → 0. From the parameterizations of R and Ω∆, we have
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R
1

Volume Fraction φ

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.1  0.2  0.3  0.4  0.5

dR
1/

dφ

Volume Fraction φ

T||

T⊥

Figure 5: The coefficient R1 and its derivative dR1/dφ.

R1(φ) = lim
k→0

[R]0T
[Ω∆]0T

=
3φ

Ω(φ)
, (68)

φ
dR1

dφ
= lim

k→0

1

[Ω∆]0T

(

[R]‖T − R1[Ω∆]
‖
T

)

, (69)

φ
dR1

dφ
= lim

k→0

1

[Ω∆]0T

(

[R]⊥T − R1[Ω∆]⊥T
)

. (70)
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Figure 5 shows R1 from (68) and dR1/dφ calculated from (69) and (70) with R1 of (68). The results
are consistent with themselves and with the dilute limit result (54).

5.3 The polar vector of the antisymmetric stress
We proceed in the same way for the polar vector of the antisymmetric stress, V. By including all the
terms with the correct parity and vectorial nature which contribute to leading order in k, we write

V = V1u∆ + V2a
2
Em · ∇φ + V3a

2∇2um + a2∇× (VΩΩ∆) . (71)

Solving the closure equation for the coefficients, we have
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Figure 6: The closure coefficients of V.

V1 = lim
k→0

[V ]0F
[u∆]0F

, (72)

φ
dV1

dφ
= lim

k→0

1

[u∆]0F

(

[V ]‖F − V1[u∆]
‖
F

)

, (73)

V2(φ) = lim
k→0

1

(ka)φ

(

[V ]‖E − V1[u∆]
‖
E

)

, (74)

V3(φ) = − lim
k→0

1

(ka)2[um]⊥F

(

[V ]⊥F − V1[u∆]⊥F − φ
dV1

dφ
[u∆]0F

)

, (75)

V3(φ) = − lim
k→0

1

(ka)2[um]⊥E

(

[V ]⊥E − V1[u∆]⊥E − V2(ka)φ
)

, (76)

φ
d

dφ
(VΩ Ω) = lim

k→0

(

[V ]⊥T − V1[u∆]⊥T + V3(ka)2[um]⊥T
)

. (77)
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The numerical results are shown in Fig. 6. We observe that the consistencies of V1, V2 and V3 with the
dilute limit result in (55), as well as the consistencies between two estimations for V3 and (d/dφ)VΩ Ω.

6 Conclusions

We have developed a non-uniform ensemble averaging technique. Applying this technique for the
linear sinusoidal non-uniformity in (12), the particle translational and rotational velocities U and Ω,
the mixture velocity um, the symmetric tensor and antisymmetric vectors of the mixture stress S, R,
and V have been evaluated in the systematic parameterizations. Based on the general criteria, the
closure relations of S, R, and V have been formed, and in the limit k → 0, we have (62) for S, (67)
for R, and (71) for V. Using the non-uniform averages, the closure coefficients, such as the effective
viscosity µe, have been determined, and confirmed their consistency with the dilute limit results in
(53), (54), and (55).

The results show that, in the limit k → 0, the mixture stress Σ is written for arbitrary flows as

Σ

µ
= 2µe(φ) Em + R1(φ) ε · Ω∆, (78)

where ε is the Levi-Civita (permutation) tensor.
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