Errata on the papers for two-body exact solutions in Stokes flows

Here, some typos and errors in the publications for the exact solutions of two particles in Stokes flows by Jeffrey et al are summarized.
(Mathematical notations are done by LaTeXMathML. To see equations, please activate Javascript on your browser.)

• D.J.Jeffrey and Y.Onishi, J. Fluid Mech. 139 (1984) pp.261-290.
• (JO-1.6) and (JO-1.12): those scalar functions are defined for the non-dimensional matrices $\hat{A}, \hat{B}, \hat{C}, \hat{a}, \hat{b}, \hat{c}$, not for the bare matrices $A, B, C, a, b, c$.
• (JO-3.11a) $\chi_{mn}^{(\alpha)} = (-1)^{3-\alpha} U \delta_{m0}\delta_{n1}$
• (JO-4.9) The index of the last P is $s (q-s) (p-n-1)$
• (JO-4.10) typo on the closing brace at the index of the second P.
• (JO-6.12) the index of $f$ is $2k$ (not $2j$)
• (JO-6.13) there are two corrections: one term outside the summation (the third term in the right-hand side below) and the factor 4 in the denominator at the second term in the summation were missing. The correct form is
$X_{12}^{C} = \frac{4\lambda^2}{(1+\lambda)^4}\ln\frac{s+2}{s-2} +\frac{8\lambda^2}{(1+\lambda)^4}s^{-1}\ln(1-4s^{-2}) -\frac{16\lambda^2}{(1+\lambda)^4}s^{-1} -\frac{8}{(1+\lambda)^3}\sum_{k=1}^{\infty} \left\{ (1+\lambda)^{-2k-1}f_{2k+1} -2^{2k+2}k^{-1}(2k+1)^{-1}\frac{\lambda^2}{4(1+\lambda)} \right\}s^{-2k-1}$
• p. 277 in JO, $g_5 = \frac{1}{125}\lambda (43 - 24\lambda + 43\lambda^2)(1+\lambda)^{-4}$ ,from Ladd (1990) J.Chem.Phys. p.3487 (or Kim-Mifflin -- I do not check it).
• p.282 in JO (3rd line from the bottom), the left-hand side is $P_{1pq}$ (not $p_{1pq}$).
• (JO-12.1) $Q_{1pq} = \delta_{0p} \delta_{0q} • (JO-12.2)$x_{11}^{c} = \sum f_{n}(\lambda) (1+\lambda)^{-n} s^{-n}$(drop the factor of$2^{n}$from the right-hand side) • (JO-12.3)$x_{12}^{c} = -\frac{1}{8}(1+\lambda)^{3}\sum f_{n}(\lambda) (1+\lambda)^{-n} s^{-n}$(drop the factor of$2^{n}$from the right-hand side) • D.J.Jeffrey, Phys. Fluids A 4 (1992) pp.16-29. • Note: the differences of (J-60) and (J-61) from (JO-4.10) and (JO-4.11) are coming from the different definition of$Q_{npq}$. That is,$Q$in [J-1992] is equal to$(2/3)$times$Q$in [JO-1984]. • D.J.Jeffrey, J.F.Morris and J.F.Brady, Phys. Fluids A 5 (1993) pp.2317-2325. • at p. 2321,$f_8$for$X^Q$should be •$f_8 = 432 \lambda^2 -1410 \lambda^3 +5400 \lambda^4 +6240 \lambda^5\$.