Next: About this document ...
Up: RYUON - a Particle
Previous: Preamble
- 1
-
Opengl.
http://www.opengl.org/.
- 2
-
Swig: Simplified wrapper and interface generator.
http://www.swig.org/.
- 3
-
C. W. J. BEENAKKER, Ewald sum of the Rotne-Prager tensor, J.
Chem. Phys., 85 (1986), pp. 1581-1582.
- 4
-
J. F. BRADY AND G. BOSSIS, Stokesian dynamics, Annu. Rev. Fluid
Mech., 20 (1988), pp. 111-157.
- 5
-
J. F. BRADY, R. J. PHILLIPS, J. C. LESTER, AND G. BOSSIS, Dynamic
simulation of hydrodynamically interacting suspensions, J. Fluid Mech., 195
(1988), pp. 257-280.
- 6
-
L. DURLOFSKY, J. F. BRADY, AND G. BOSSIS, Dynamic simulation of
hydrodynamically interacting particles, J. Fluid Mech., 180 (1987), p. 21.
- 7
-
J. W. EATON, Gnu octave.
http://www.gnu.org/software/octave/.
- 8
-
FREE SOFTWARE FOUNDATION, The gnu scientific library.
http://www.gnu.org/software/gsl/.
- 9
-
height 2pt depth -1.6pt width 23pt, Guile.
http://www.gnu.org/software/guile/.
- 10
-
L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle
simulations, J. Comput. Phys., 73 (1987), pp. 325-348.
- 11
-
L. F. GREENGARD, The Rapid Evaluation of Potential Fields in
Particle Systems, The MIT Press, Cambridge, 1988.
- 12
-
H. HASIMOTO, On the periodic fundamental solutions of the Stokes
equations and their application to viscous flow past a cubic array of
spheres, J. Fluid Mech., 5 (1959), pp. 317-328.
- 13
-
K. ICHIKI, Improvement of the Stokesian Dynamics method for
systems with finite number of particles, J. Fluid Mech., 452 (2002),
pp. 231-262.
- 14
-
K. ICHIKI AND J. F. BRADY, Many-body effects and matrix-inversion in
low-Reynolds-number hydrodynamics, Phys. Fluids, 13 (2001), pp. 350-353.
- 15
-
K. ICHIKI AND S. CONSTA, Disintegration mechanisms of charged
aqueous nanodroplets studied by simulations and analytical models, J. Phys.
Chem. B, 110 (2006), pp. 19168-19175.
- 16
-
K. ICHIKI AND H. HAYAKAWA, Dynamical simulation of fluidized beds:
Hydrodynamically interacting granular particles, Phys. Rev. E, 52 (1995),
pp. 658-670.
- 17
-
height 2pt depth -1.6pt width 23pt, Analysis of
statistical quantities in simulation of fluidized beds, Phys. Rev. E, 57
(1998), pp. 1990-1996.
- 18
-
D. J. JEFFREY, The calculation of the low Reynolds number
resistance for two unequal spheres, Phys. Fluids A, 4 (1992), pp. 16-29.
- 19
-
D. J. JEFFREY, J. F. MORRIS, AND J. F. BRADY, The pressure moments
for two rigid spheres in low-Reynolds-number flow, Phys. Fluids A, 5
(1993), pp. 2317-2325.
- 20
-
D. J. JEFFREY AND Y. ONISHI, Calculation of the resistance and
mobility functions for two unequal spheres in low-Reynolds-number flow, J.
Fluid Mech., 139 (1984), pp. 261-290.
- 21
-
S. KIM AND R. T. MIFFLIN, The resistance and mobility functions of
two equal spheres in low-Reynolds-number flow, Phys. Fluids, 28 (1985),
p. 2033.
- 22
-
KITWARE INC., The visualization toolkit.
http://www.vtk.org/.
- 23
-
Y. M. MATSUMOTO, Ruby.
http://www.ruby-lang.org/.
- 24
-
G. VAN ROSSUM, The python programming language.
http://www.python.org/.
- 25
-
L. WALL, Perl.
http://www.perl.org/.
Kengo Ichiki 2008-10-12