Next: About this document ...
Up: RYUON - a Particle
 Previous: Preamble
 
- 1
 - 
Opengl.
http://www.opengl.org/.
 - 2
 - 
Swig: Simplified wrapper and interface generator.
http://www.swig.org/.
 - 3
 - 
C. W. J. BEENAKKER, Ewald sum of the Rotne-Prager tensor, J.
  Chem. Phys., 85 (1986), pp. 1581-1582.
 - 4
 - 
J. F. BRADY AND G. BOSSIS, Stokesian dynamics, Annu. Rev. Fluid
  Mech., 20 (1988), pp. 111-157.
 - 5
 - 
J. F. BRADY, R. J. PHILLIPS, J. C. LESTER, AND G. BOSSIS, Dynamic
  simulation of hydrodynamically interacting suspensions, J. Fluid Mech., 195
  (1988), pp. 257-280.
 - 6
 - 
L. DURLOFSKY, J. F. BRADY, AND G. BOSSIS, Dynamic simulation of
  hydrodynamically interacting particles, J. Fluid Mech., 180 (1987), p. 21.
 - 7
 - 
J. W. EATON, Gnu octave.
http://www.gnu.org/software/octave/.
 - 8
 - 
FREE SOFTWARE FOUNDATION, The gnu scientific library.
http://www.gnu.org/software/gsl/.
 - 9
 - 
height 2pt depth -1.6pt width 23pt, Guile.
http://www.gnu.org/software/guile/.
 - 10
 - 
L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle
  simulations, J. Comput. Phys., 73 (1987), pp. 325-348.
 - 11
 - 
L. F. GREENGARD, The Rapid Evaluation of Potential Fields in
  Particle Systems, The MIT Press, Cambridge, 1988.
 - 12
 - 
H. HASIMOTO, On the periodic fundamental solutions of the Stokes
  equations and their application to viscous flow past a cubic array of
  spheres, J. Fluid Mech., 5 (1959), pp. 317-328.
 - 13
 - 
K. ICHIKI, Improvement of the Stokesian Dynamics method for
  systems with finite number of particles, J. Fluid Mech., 452 (2002),
  pp. 231-262.
 - 14
 - 
K. ICHIKI AND J. F. BRADY, Many-body effects and matrix-inversion in
  low-Reynolds-number hydrodynamics, Phys. Fluids, 13 (2001), pp. 350-353.
 - 15
 - 
K. ICHIKI AND S. CONSTA, Disintegration mechanisms of charged
  aqueous nanodroplets studied by simulations and analytical models, J. Phys.
  Chem. B, 110 (2006), pp. 19168-19175.
 - 16
 - 
K. ICHIKI AND H. HAYAKAWA, Dynamical simulation of fluidized beds:
  Hydrodynamically interacting granular particles, Phys. Rev. E, 52 (1995),
  pp. 658-670.
 - 17
 - 
height 2pt depth -1.6pt width 23pt, Analysis of
  statistical quantities in simulation of fluidized beds, Phys. Rev. E, 57
  (1998), pp. 1990-1996.
 - 18
 - 
D. J. JEFFREY, The calculation of the low Reynolds number
  resistance for two unequal spheres, Phys. Fluids A, 4 (1992), pp. 16-29.
 - 19
 - 
D. J. JEFFREY, J. F. MORRIS, AND J. F. BRADY, The pressure moments
  for two rigid spheres in low-Reynolds-number flow, Phys. Fluids A, 5
  (1993), pp. 2317-2325.
 - 20
 - 
D. J. JEFFREY AND Y. ONISHI, Calculation of the resistance and
  mobility functions for two unequal spheres in low-Reynolds-number flow, J.
  Fluid Mech., 139 (1984), pp. 261-290.
 - 21
 - 
S. KIM AND R. T. MIFFLIN, The resistance and mobility functions of
  two equal spheres in low-Reynolds-number flow, Phys. Fluids, 28 (1985),
  p. 2033.
 - 22
 - 
KITWARE INC., The visualization toolkit.
http://www.vtk.org/.
 - 23
 - 
Y. M. MATSUMOTO, Ruby.
http://www.ruby-lang.org/.
 - 24
 - 
G. VAN ROSSUM, The python programming language.
http://www.python.org/.
 - 25
 - 
L. WALL, Perl.
http://www.perl.org/.
 
 
Kengo Ichiki 2008-10-12