next up previous contents
Next: About this document ... Up: RYUON - a Particle Previous: Preamble

Bibliography

1
Opengl.
http://www.opengl.org/.

2
Swig: Simplified wrapper and interface generator.
http://www.swig.org/.

3
C. W. J. BEENAKKER, Ewald sum of the Rotne-Prager tensor, J. Chem. Phys., 85 (1986), pp. 1581-1582.

4
J. F. BRADY AND G. BOSSIS, Stokesian dynamics, Annu. Rev. Fluid Mech., 20 (1988), pp. 111-157.

5
J. F. BRADY, R. J. PHILLIPS, J. C. LESTER, AND G. BOSSIS, Dynamic simulation of hydrodynamically interacting suspensions, J. Fluid Mech., 195 (1988), pp. 257-280.

6
L. DURLOFSKY, J. F. BRADY, AND G. BOSSIS, Dynamic simulation of hydrodynamically interacting particles, J. Fluid Mech., 180 (1987), p. 21.

7
J. W. EATON, Gnu octave.
http://www.gnu.org/software/octave/.

8
FREE SOFTWARE FOUNDATION, The gnu scientific library.
http://www.gnu.org/software/gsl/.

9
height 2pt depth -1.6pt width 23pt, Guile.
http://www.gnu.org/software/guile/.

10
L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), pp. 325-348.

11
L. F. GREENGARD, The Rapid Evaluation of Potential Fields in Particle Systems, The MIT Press, Cambridge, 1988.

12
H. HASIMOTO, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech., 5 (1959), pp. 317-328.

13
K. ICHIKI, Improvement of the Stokesian Dynamics method for systems with finite number of particles, J. Fluid Mech., 452 (2002), pp. 231-262.

14
K. ICHIKI AND J. F. BRADY, Many-body effects and matrix-inversion in low-Reynolds-number hydrodynamics, Phys. Fluids, 13 (2001), pp. 350-353.

15
K. ICHIKI AND S. CONSTA, Disintegration mechanisms of charged aqueous nanodroplets studied by simulations and analytical models, J. Phys. Chem. B, 110 (2006), pp. 19168-19175.

16
K. ICHIKI AND H. HAYAKAWA, Dynamical simulation of fluidized beds: Hydrodynamically interacting granular particles, Phys. Rev. E, 52 (1995), pp. 658-670.

17
height 2pt depth -1.6pt width 23pt, Analysis of statistical quantities in simulation of fluidized beds, Phys. Rev. E, 57 (1998), pp. 1990-1996.

18
D. J. JEFFREY, The calculation of the low Reynolds number resistance for two unequal spheres, Phys. Fluids A, 4 (1992), pp. 16-29.

19
D. J. JEFFREY, J. F. MORRIS, AND J. F. BRADY, The pressure moments for two rigid spheres in low-Reynolds-number flow, Phys. Fluids A, 5 (1993), pp. 2317-2325.

20
D. J. JEFFREY AND Y. ONISHI, Calculation of the resistance and mobility functions for two unequal spheres in low-Reynolds-number flow, J. Fluid Mech., 139 (1984), pp. 261-290.

21
S. KIM AND R. T. MIFFLIN, The resistance and mobility functions of two equal spheres in low-Reynolds-number flow, Phys. Fluids, 28 (1985), p. 2033.

22
KITWARE INC., The visualization toolkit.
http://www.vtk.org/.

23
Y. M. MATSUMOTO, Ruby.
http://www.ruby-lang.org/.

24
G. VAN ROSSUM, The python programming language.
http://www.python.org/.

25
L. WALL, Perl.
http://www.perl.org/.



Kengo Ichiki 2008-10-12